

Pangea Software’s Ultimate Game
Programming Guide for Mac OS X

 Brian Greenstone

Pangea Software, Inc.
12405 John Simpson Ct.
Austin, TX 78732
www.pangeasoft.net

Printed in the United States of America
04 7 6 5 4 3 2 First Edition

ISBN: 0-9761505-0-6

©2004 Pangea Software, Inc. All rights reserved. No part of this book or the included CD may be
reproduced or transmitted in any form or by any means, electronic or mechanical, including photo-
copying, recording, or by any information storage and retrieval system, without prior written
permission from Pangea Software, Inc.

Grant of License
Purchasers of this book may freely include the source code contained in this book in their own
software projects.

Limits of Liability and Disclaimer of Warranty
The Author and Publisher of this book have used their best efforts in preparing the book and the
programs contained in it. These efforts include the development, research, and testing of the claims
and programs to determine their effectiveness. The Author and Publisher make no warranty of any
kind, expressed or implied, with regard to these programs or the written documentation contained in
this book. The Author and Publisher shall not be liable in any event for incidental or consequential
damages in connection with, or arising out of, the furnishing, performance, or use of these programs.

Trademarks
Pangea Software, the Pangea Software logo, Bugdom, Nanosaur, Cro-Mag Rally, Enigmo, Weekend
Warrior, and Otto Matic are registered trademarks of Pangea Software, Inc. Many of the designations
used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, Pangea Software, Inc. was aware of a trademark claim. Apple,
the Apple logo, Mac, Macintosh, QuickDraw, QuickTime, Sherlock, Carbon, Rendezvous are trade-
marks of Apple Computer, Inc. registered in the United States and other countries.

Special thanks to the following people who have made my life easier over the years in this business:
Chris Bentley and the entire ATI group, George Warner, Eric Klein, Tuncer Deniz, Peter Cohen, Phil
Sulak, and many others who I’m sure I’ll hear from since I forgot to put their names in this list.

iii

Table of Contents

Introduction .. 1
Chapter 1: Development Tools for the Mac.. 3

Xcode.. 3
Interface Builder .. 5
CHUD... 6
OpenGL Profiler & Shader Builder.. 8
Documentation & Sample Code ... 9

Chapter 2: Choosing a Video Mode ... 11
Getting a List of Valid Display Modes .. 13
Letting the User Choose a Video Mode ... 17

Chapter 3: OpenGL for the Mac .. 25
Initializing OpenGL... 26
Drawing an OpenGL Scene .. 29
Working with Text in OpenGL... 30
Displaying Windows in a Full-Screen Context ... 33

Chapter 4: OpenGL Optimizations.. 37
Macro Optimizations ... 37
Caching the OpenGL State ... 38
The Transform Hint... 43
Normals .. 43
Colors ... 44
Reading Pixels ... 44
Know when to use glBegin/End or Vertex Arrays .. 44
Optimizing VRAM.. 46

Chapter 5: PowerPC Math Optimizations.. 49
AltiVec for Faster Matrix Multiplies.. 49
Fast Vector Normalizing ... 52

Chapter 6: Vertex Array Range ... 55
Initializing Vertex Array Range ... 55
Drawing with VAR.. 60
Issues with VAR.. 62

Chapter 7: Calculating the Frame Rate .. 65
Chapter 8: Gamma Fades.. 69

 iv

CGSetDisplayTransferByFormula ... 70
CGSetDisplayTransferByTable .. 73

Chapter 9: Carbon Events ... 75
Event Loop Timers .. 75
Menu Bars .. 78
Preventing Your Game From Going to Sleep.. 83

Chapter 10: Audio... 85
Quicktime for Music Playback ... 85
The Sound Manager for Playing Effects .. 98
OpenAL.. 111

Chapter 11: Simple Input .. 125
Reading the Keyboard with GetKeys() .. 125
Reading the Keyboard with Carbon Events ... 129
Reading the Mouse .. 133

Chapter 12: Input with the HID Manager .. 139
The Good, the Bad, and the HID Manager .. 139
Some HID Manager Terminology.. 141
Getting the List of HID Devices... 142
Getting a Device’s Elements... 152
Reading Input Data.. 169
Input.c... 171

Chapter 13: Writing a Maya Plug-in ... 175
Initializing A Maya Plug-In .. 175
The Plug-In Entry Point .. 177
Getting the Scene’s Layer Info ... 179
Extracting Geometry Data .. 184
Extracting Shader Data.. 189
Installing the Maya Plug-In... 195
The BG3D File Format ... 198
BG3D Linker ... 199
Loading and Using BG3D Files ... 201

Chapter 14: Stereo 3D .. 203
Types of Stereo Glasses .. 203
Stereo Camera Calculations .. 204
Rendering for Anaglyph Glasses .. 209
Anaglyph Color Balancing.. 212
Rendering for LCD Shutter Glasses ... 219
Shutter Glasses Hardware ... 223
Fun with Anaglyphs .. 224

v

Chapter 15: Networking .. 229
Rendezvous .. 229
BSD Sockets .. 238

Chapter 16: Copy Protection... 249
Serial Numbers .. 249
Hackerproofing .. 252

Chapter 17: Miscellaneous Mac Tidbits .. 257
Setting the Default Directory .. 257
Finding the Preferences Folder ... 258
Language Determination ... 259
Filenames ... 262
Loading Images with Quicktime .. 263

Chapter 18: Marketing & Selling ... 265
Marketing Your Game... 265
Game Demos.. 267
Selling Retail.. 269
Selling Online .. 270

1

Introduction

Walk into any bookstore or do a search on Amazon.com, and you’ll find dozens and dozens
of game programming books. Unfortunately, all but a few of these books are written assum-
ing you’re on a PC, using Direct 3D, Direct Sound, and all the other Windows-specific
technologies. Some of these books have good information about general game programming
techniques, but all that information won’t do you any good on a Macintosh unless you know
how to build a Mac-specific game engine. There are many things you need to know about
building a game engine for Mac OS X that are different from the PC, and the goal of this
book is to show them to you.

We’re going to start from the ground up as we build a small 3D game engine shell to get you
started in your Mac game programming endeavors. This book isn’t about how to write or
design a game, but rather how to build a game engine for Mac OS X. Those other books on
game programming can teach you general game programming technique dealing with AI,
collision detection, world building, etc., but this book’s focus is specifically on the Macintosh
technologies that you need to know to get a game engine up and running. If you want to make
a career out of developing games for the Mac, this book also covers topics dealing with the
business end of things including copy protection, distribution, and marketing.

I have been programming games on the Mac since 1991, and running Pangea Software for
even longer. Over those years I’ve accumulated quite a stockpile of useful techniques to get
the best performance out of a game engine on this platform. I’ve also encountered several
bugs with the OS that can often present issues for game programmers, so I’ll be sure to point
all of those out to make you aware of them.

The CD that comes with this book contains sample projects all written in straight C (none of
that C++ gibberish) using Apple’s Xcode compiler. These projects include all of the code
examples that are discussed in each of the following chapters, and as we progress through
these chapters, we’ll continue to build upon the game engine. By the time we get to the end
of the book you’ll have a robust set of functions that you can use to start coding your own
games for the Mac.

3

Chapter 1: Development Tools for the Mac

One of the great things about developing for the Macintosh is that all of the basic tools you
need to build an application are provided free from Apple, and they’re very good and power-
ful tools:

Xcode
All of the sample projects in this book are built with Apple’s new Xcode compiler (version
1.5). Prior to Xcode the compiler of choice for any serious Mac programming was Metro-
werks’ CodeWarrior, but as the price of CodeWarrior has continued to increase over the years
it hasn’t evolved enough to justify the expense. Luckily for Mac developers Apple has leap-
frogged over CodeWarrior with the totally free Xcode compiler. There are still some things
that CodeWarrior is better at than Xcode, but the technology behind Xcode is much more
modern and has a great future ahead of it.

Programmers are often afraid of moving from one development environment to another
because when things change they’re left a bit disoriented, and incompatibilities with existing
code can pop up. This was definitely the case when Apple released Project Builder at the
onset of OS X. Project Builder was a mess, and no serious game programmer would use it.
Apple knew this and wanted to make the transition from CodeWarrior to Xcode a smooth
one, so in addition to being able to import CodeWarrior projects, you can also configure
Xcode to use the CodeWarrior key shortcuts for just about everything.

The only significant difference between the CodeWarrior and Xcode interfaces is how the
project and target settings are handled. In CodeWarrior there was a nice, clean Project
Settings dialog that anyone could understand. Xcode has the “Inspector” window that lets
you set all sorts of project preferences. Unfortunately, the Inspector window is a bit
overwhelming and is poorly documented. It requires more low-level, command line compiler
knowledge than most Mac programmers are used to:

Chapter 1: Development Tools for the Mac 4

Figure 1-1: The Xcode Inspector window

These are some of the key features that Xcode has over CodeWarrior:

DISTRIBUTED BUILDS
This feature lets Xcode send different source files to multiple processors and/or machines on
the network for simultaneous parallel compilation. So, if you’re on a dual processor machine,
Xcode will compile two .c files simultaneously which obviously speeds up your total project
build time. If you have, say, a total of three dual-processor G5’s on your local network then
Xcode can distribute .c files to all of them, and theoretically be compiling six files simultane-
ously!

PREDICTIVE COMPILATION
Most of the time when you’re working on a project you’re just sitting there typing, and the
CPU is spinning its wheels doing nothing. But Xcode is smart. Instead of just sitting there
doing nothing, it will start compiling files in the background. That way when you’re ready to
build your project, most of the .c files have already been compiled, and all Xcode needs to do
is link.

GCC
While CodeWarrior uses it’s own proprietary compiler, Xcode uses GCC which is a much
more robust compiler that gives you access to just about every compilation parameter that

5

you could ever want. It also issues far superior compile warnings. For example, take a look
at the following code:

 int TestFunc(void)
 {
 int a, b, c;

 c = 0;
 a = 5;

 return(a);
 }

CodeWarrior would not do a very good job with this function because it would only report a
warning that the variable b is unused. However, logically both b and c are not used, and
GCC let’s us know it. Even though the variable c is assigned a value of 0 it is never used to
actually do anything. This one feature alone is worth switching from CodeWarrior to Xcode
since it really helps eliminate garbage from your code. GCC is smart enough to even detect
this on global variables. If you convert an old CodeWarrior project to Xcode and recompile,
you’ll be amazed at how many “unused variable” warnings come up that you never saw with
CodeWarrior.

Xcode is not perfect, however. I won’t bother listing all the problems with it since Apple has
been rapidly fixing bugs and releasing updates, so any problems I were to list here would
likely become invalid in the near future. But suffice to say that Xcode’s main flaws deal with
stability and ease of use. Xcode’s Inspector interface is a nebulous monster compared with
CodeWarrior’s simple project Settings dialog, so just setting up the parameters of a project
with Xcode is a project all in itself and can be quite overwhelming to new users. The best
thing to do is to start with one of the sample projects included with this book, and then go
from there.

There is a wonderful document on Apple’s web site that details the differences between
Xcode and CodeWarrior, and it provides a very good guide for transitioning from CodeWar-
rior to Xcode. The document can be found here:

http://developer.apple.com/tools/switchtoxcode.html

Interface Builder
Interface Builder is a very powerful interface creation tool, but since games usually have their
own graphical interfaces for most things, we only need to use this tool to create some basic
dialogs and menus. In my games, I usually do the Video Configuration, Input Configuration,

Chapter 1: Development Tools for the Mac 6

Registration, and Settings dialogs as standard Mac OS X dialogs using Interface Builder. The
rest of the interface is done as custom in-game screens such as menu screens, high score
screens, etc.

For those programmers who are used to using ResEdit or Resourcerer on Mac OS 9, Interface
Builder is very similar, yet much more powerful.

Figure 1-2: Interface Builder

CHUD
CHUD is the acronym that Apple uses to refer to its suite of Computer Hardware Understand-
ing Development Tools. A pretty lousy acronym I know, but the tools are incredible! There
are many tools that make up CHUD, and the most useful one is called Shark. Shark is a low-
level performance optimization tool. It shows you exactly how much time is being spent in
each function, on each line of each function, and even each opcode of each line.

7

Figure 1-3: A Shark profile of Nanosaur 2

Shark even goes so far as to offer suggestions on how to optimize specific parts of your code.
In Figure 1-4 below you can see that under the Comment column Shark indicates problems
with the execution performance, and if there is a “!” icon you can click on it to reveal some
suggestions for improving performance:

Figure 1-4: Shark giving tips on how to optimize your code

Chapter 1: Development Tools for the Mac 8

The CHUD tools and documentation can be found on Apple’s web site at:

http://developer.apple.com/tools/performance

Once installed, the tools are found in your Developer/Applications/Performance Tools folder
of your boot drive. You must download and install these tools yourself because they are not
installed by default as part of the OS X Developer Tools.

OpenGL Profiler & Shader Builder
Since all games on the Mac use OpenGL for their 2D and 3D rendering Apple has provided
some very useful OpenGL tools:

OpenGL Profiler is similar to the Shark tool in CHUD except that it details the performance
of the OpenGL sub-system in your game. As you run your game the OpenGL Profiler tool
will track all of the OpenGL calls that you make, and build a statistical database of everything
that’s going on. This way you can easily determine which OpenGL calls your application is
spending its time in.

Figure 1-5: OpenGL Profiler statistics for Nanosaur 2

9

Shader Builder on the other hand is not a performance tool at all. This is a great little
application for quickly writing and testing vertex and fragment shader programs supported by
all new 3D video hardware. You use this to quickly develop special effects for your game to
do things like bump mapping, cartoon shading, and fur.

Figure 1-6: Shader Builder showing a per-pixel lighting fragment program

Once you’ve written a shader program with Shader Builder you can save it out to a text file
and then your code can read it in with the usual OpenGL Shader Program function
glProgramStringARB(). For information on how to program and use Shader Programs with
OpenGL you should consult the book called “The OpenGL Extensions Guide”.

Documentation & Sample Code
Whenever you install any of Apple’s Developer tools you also get lots of documentation and
sample code. Take a look in the Developer folder on your OS X boot drive and you’ll see a
folder full of great stuff! All of the tools mentioned above reside in there. The Documenta-
tion folder holds a massive amount of information about the tools and also the programming
API’s for the Mac. Then there’s the Examples folder that has tons and tons of sample apps
for everything from CHUD to OpenGL Shader Programs to simple Carbon demos.

11

Chapter 2: Choosing a Video Mode

The first thing we’ll want to do to get a game up and running is to either create a window to
play the game in, or to take over the whole screen if we want to play full-screen. Your games
should always go full-screen since you get the maximum 3D rendering performance that way,
and games that go full-screen look a lot more professional than ones that run in a window.
However, even if your game normally plays full-screen you will always want to have a stand-
by windowed mode for debugging. On OS 9 you could still debug a game that was running
full-screen since the CodeWarrior debugger’s windows would always appear on top of the
game. However, on OS X this is never the case. If you set a breakpoint in your game and the
debugger stops on it you’ll have no way of seeing it since all of the debugger’s windows will
be hidden underneath the game. The only way around this is to use multiple monitors or to
do remote debugging, but most people don’t have such fancy setups, so testing in a windowed
mode is the best way to go.

In the days of Mac OS 8 and 9 there was a technology called Game Sprockets. This was a set
of libraries that made writing games on the Mac a much easier process than they are today.
Unfortunately, Apple didn’t bring most of the Game Sprockets to OS X, so we’ve now got to
do a lot of things by hand. One Game Sprocket that they did bring over to OS X is Draw
Sprocket, but I don’t recommend using it. Instead, we will use Core Graphics API calls to
get information about our displays, and to set our screen mode. This gives us much better
control over our display than would Draw Sprocket.

Listing 2-1: Switching the Display Mode
CGDirectDisplayID gCGDisplayID;
short gGameWindowWidth, gGameWindowHeight;

void SwitchDisplayMode(int width, int height, int depth)
{

CFDictionaryRef refDisplayMode = 0;

 /* GET THE MAIN DISPLAY & CAPTURE IT */

 gCGDisplayID = CGMainDisplayID();
 CGDisplayCapture(gCGDisplayID);

 /* FIND BEST MATCH FOR WHAT WE WANT */

 refDisplayMode = CGDisplayBestModeForParameters(

gCGDisplayID,

Chapter 2: Choosing a Video Mode 12

depth, // 16 or 32-bit depth
width, // horiz rez
height, // vert rez
nil);

 if (refDisplayMode == nil)
 DoFatalAlert("\pCGDisplayBestModeForParameters failed!");

 /* SWITCH TO IT */

 CGDisplaySwitchToMode(gCGDisplayID, refDisplayMode);

 /* GET THE ACTUAL WIDTH/HEIGHT OF OUR SCREEN */

 gGameWindowWidth = CGDisplayPixelsWide(gCGDisplayID);
 gGameWindowHeight = CGDisplayPixelsHigh(gCGDisplayID);
}

The first thing that SwitchDisplayMode() does is to “capture” the main display (the main
display is whichever display has the menu bar):

 CGDisplayCapture(gCGDisplayID);

What capturing does is tell the system that your application wants to reserve this display for
it’s own exclusive use. No other application can change this display’s configuration. Then
we ask Core Graphics for the display mode that best matches our parameters:

 refDisplayMode = CGDisplayBestModeForParameters(
 gCGDisplayID,
 depth, // 16 or 32-bit depth
 width, // horiz rez
 height, // vert rez
 nil);

Three of the fundamental inputs to CGDisplayBestModeForParameters() are the desired bit-
depth, horizontal resolution, and vertical resolution. If you’ve asked for a valid resolution
supported by your display then this is most likely the mode that you’ll get, but if you’ve
asked for a mode that your display cannot do, then Core Graphics will tweak your settings to
the closest valid mode allowed by the display. In other words, if you ask for a screen
resolution that’s 900x600, odds are that you’ll get 800x600 since no displays that I know of
support a 900x600 mode, yet 800x600 is the nearest common resolution.

To cause the video mode switch to occur, we do this:

13

 CGDisplaySwitchToMode (gCGDisplayID, refDisplayMode);

Since there’s no guarantee that the resolution we got is the one we asked for, we need to
extract the actual resolution back out of our display:

 gGameWindowWidth = CGDisplayPixelsWide(gCGDisplayID);
 gGameWindowHeight = CGDisplayPixelsHigh(gCGDisplayID);

Getting a List of Valid Display Modes
Now that we know how to set the display to our desired mode, it would be a good idea to
know what video modes are actually supported by the display so that the user can choose a
resolution. To do this, we’ll need to bring up a dialog with a pop-up menu from which the
user can select video modes. Before we display any dialogs, however, we first need to create
this list.

Listing 2-2: Creating a List of Display Modes
typedef struct
{
 int rezH,rezV;
}VideoModeType;

short gNumVideoModes = 0;
VideoModeType gVideoModeList[MAX_VIDEO_MODES];

void CreateDisplayModeList(void)
{
 int i, numDeviceModes;
 CFArrayRef modeList;

 gNumVideoModes = 0;

 /* GET MAIN MONITOR ID */

 gCGDisplayID = CGMainDisplayID();

 /* GET LIST OF MODES FOR THIS MONITOR */

 modeList = CGDisplayAvailableModes(gCGDisplayID);
 if (modeList == nil)
 DoFatalAlert("\pCGDisplayAvailableModes failed!");

 numDeviceModes = CFArrayGetCount(modeList);

Chapter 2: Choosing a Video Mode 14

 /*********************/
 /* EXTRACT MODE INFO */
 /*********************/

 for (i = 0; i < numDeviceModes; i++)
 {
 CFNumberRef numRef;
 CFDictionaryRef mode;
 Boolean skip;
 int j;
 long width, height, dep;

 // Get the mode out of the list

 mode = CFArrayGetValueAtIndex(modeList, i);
 if (mode == nil)
 DoFatalAlert("\pCFArrayGetValueAtIndex failed!");

 // get mode’s width

 numRef = CFDictionaryGetValue(mode, kCGDisplayWidth);
 CFNumberGetValue(numRef, kCFNumberLongType, &width) ;

 // get mode’s height

 numRef = CFDictionaryGetValue(mode, kCGDisplayHeight);
 CFNumberGetValue(numRef, kCFNumberLongType, &height);

 // get mode’s depth

 numRef = CFDictionaryGetValue(mode, kCGDisplayBitsPerPixel);
 CFNumberGetValue(numRef, kCFNumberLongType, &dep);
 if (dep != 32) // only look for 32-bit modes
 continue;

 /***************************/
 /* SEE IF ADD TO MODE LIST */
 /***************************/

 /* SEE IF IT'S A VALID MODE FOR US */

 if (CFDictionaryGetValue(mode,
 kCGDisplayModeUsableForDesktopGUI) != kCFBooleanTrue)
 continue;

 /* CHECK IF ALREADY IN LIST */

 skip = false;
 for (j = 0; j < gNumVideoModes; j++)

15

 {
 if ((gVideoModeList[j].rezH == width) &&
 (gVideoModeList[j].rezV == height))
 {
 skip = true;
 break;
 }
 }

 if (!skip)
 {
 /* THIS REZ NOT IN LIST YET, SO ADD */

 if (gNumVideoModes < MAX_VIDEO_MODES)
 {
 gVideoModeList[gNumVideoModes].rezH = width;
 gVideoModeList[gNumVideoModes].rezV = height;
 gNumVideoModes++;
 }
 }
 }
}

Getting the list of video modes is simple:

 modeList = CGDisplayAvailableModes(gCGDisplayID);

Then we iterate thru modeList finding modes that we want to keep by calling a series of Core
Foundation functions that give us information about each mode:

 mode = CFArrayGetValueAtIndex(modeList, i);

The variable mode is what Apple refers to as a “dictionary”. It contains a lot of data, and to
find the values of specific pieces of data we look them up in the dictionary with a call to
CFDictionaryGetValue():

 numRef = CFDictionaryGetValue(mode, kCGDisplayWidth);

The constant kCGDisplayWidth is a string that gets looked up in the dictionary and then that
entry’s value is returned. Unfortunately, CFDictionaryGetValue() does not return an actual
integer number that we can use. Rather, it returns a CFNumberRef which is an opaque
structure that contains our value, so we need to make another function call to get the integer
value from it:

CFNumberGetValue(numRef, kCFNumberLongType, &width)

Chapter 2: Choosing a Video Mode 16

In our code we are only using kCGDisplayBitsPerPixel, kCGDisplayWidth, and
kCGDisplayHeight, however, there are quite a few additional parameters you can get for
each display mode:

kCGDisplayMode
kCGDisplayBitsPerSample
kCGDisplaySamplesPerPixel
kCGDisplayRefreshRate
kCGDisplayModeUsableForDesktopGUI
kCGDisplayIOFlags
kCGDisplayBytesPerRow

So, if you wanted to determine the refresh rate of the current display mode then do this:

 numRef = CFDictionaryGetValue(mode, kCGDisplayRefreshRate);

However, there is one very important thing to know about refresh rates, and that is that LCD
displays will return a value of 0 even though their true refresh rate is typically 60hz. So, you
should always special-case your code like this:

 if (numRef == nil)
 refreshRate = 60;
 else
 {
 CFNumberGetValue(numRef, kCFNumberLongType, &refreshRate)
 if (refreshRate == 0)
 refeshRate = 60;
 }

Going back to Listing 2-2, you’ll notice that we’re skipping any modes that are not 32-bit.
The reason for this is that any resolutions that support 32-bits will also support 16-bits,
however, there are times when the reverse is not true. So, we only need to track 32-bit modes
since we can always make then 16-bit if we want.

It is also important to note that not all modes returned in this list are actually valid. This is a
list of all video modes supported by the video card, but not necessarily by the display itself.
Therefore, we need call this:

 CFDictionaryGetValue(mode, kCGDisplayModeUsableForDesktopGUI)

The result from this indicates if the mode is usable by the display. Some video cards can
support huge resolutions like 2048x1365, but good luck finding a 17” monitor that can
actually go that high. Testing for kCGDisplayModeUsableForDesktopGUI lets us know if the
resolution is physically possible.

17

If the video mode checks out, then we add it to our list. Since different modes can have the
same resolution, it is important to check for duplicate resolutions to avoid having duplicate
information in our list. For example, there may be 5 different video modes at the 1024x768
resolution. The resolutions of these modes are all 1024x768, but there may be different
refresh rates or other characteristics that we don’t care about.

Letting the User Choose a Video Mode
All the pieces of the puzzle are now in place, so all that’s left to do is ask the user what mode
they’d like to use. The sample project titled “Video Mode.xcode” on the CD that comes with
this book contains all the code listed above, plus the code we’re about to cover below. This
sample application displays a simple dialog box that lets you choose a video resolution and
bit-depth, or you can opt to bring up a window to render into instead.

Figure 2-1: The video mode configuration dialog

In the sample project you’ll find a file called Game.nib. This file contains the resources for
the dialog in Figure 2-1. In order to use this file in your game you need to get a reference to
it with these two lines of code:

 gBundle = CFBundleGetMainBundle();
 CreateNibReferenceWithCFBundle(gBundle, CFSTR("Game"), &gNibs);

Chapter 2: Choosing a Video Mode 18

The first line gets a reference to the application’s main bundle, and then the next line gets a
reference to the nib file named “Game.nib” that’s in that bundle. Note that you do not
include the “.nib” suffix in the filename. Once you’ve done this you can easily access any
nib resources in your application.

The following code shows how to load and process our dialog resource:

Listing 2-3: Displaying a Screen Mode Dialog
void DoScreenModeDialog(void)
{
 OSErr err;
 EventHandlerRef ref;
 EventTypeSpec list[] = {{kEventClassCommand,kEventProcessCommand}};
 ControlID idControl;
 ControlRef control;
 int i;
 EventHandlerUPP winEvtHandler;

 /*************************/
 /* INITIALIZE THE DIALOG */
 /*************************/

 /* BUILD LIST OF VIDEO MODES FOR USER TO CHOOSE FROM */

 CreateDisplayModeList();

 /* CREATE DIALOG WINDOW FROM THE NIB */

 err = CreateWindowFromNib(gNibs, CFSTR("VideoMode"),

&gDialogWindow);
 if (err)
 DoFatalAlert("\pCreateWindowFromNib failed!");

 /* SET THE ITEMS IN THE POP-UP MENU */

 BuildResolutionMenu();

 /* CREATE NEW WINDOW EVENT HANDLER */

 winEvtHandler = NewEventHandlerUPP(DoScreenModeDialog_EventHandler);
 InstallWindowEventHandler(gDialogWindow,
 winEvtHandler,

GetEventTypeCount(list),
list,
0,

19

&ref);

 /**********************/
 /* PROCESS THE DIALOG */
 /**********************/

ShowWindow(gDialogWindow);
 RunAppModalLoopForWindow(gDialogWindow);

 /*********************/
 /* GET RESULT VALUES */
 /*********************/

 /* GET "PLAY IN WINDOW" CHECKBOX */

 idControl.signature = 'wind';
 idControl.id = 0;
 GetControlByID(gDialogWindow, &idControl, &control);
 gPlayInWindow = GetControlValue(control);

 /* GET "16/32" RADIO BUTTONS */

 idControl.signature = 'bitd';
 idControl.id = 0;
 GetControlByID(gDialogWindow, &idControl, &control);

 if (GetControlValue(control) == 1)
 gDesiredColorDepth = 16;
 else
 gDesiredColorDepth = 32;

 /* GET RESOLUTION MENU VALUE */

 idControl.signature = 'rezm';
 idControl.id = 0;
 GetControlByID(gDialogWindow, &idControl, &control);
 i = GetControlValue(control);

 gDesiredRezH = gVideoModeList[i-1].rezH;
 gDesiredRezV = gVideoModeList[i-1].rezV;

 /***********/
 /* CLEANUP */
 /***********/

 DisposeEventHandlerUPP (winEvtHandler);
 DisposeWindow (gDialogWindow);

Chapter 2: Choosing a Video Mode 20

}

The function CreateWindowFromNib() is all that we need to call to load the dialog’s resource
data. We simply supply this function with the name of the resource to load, “VideoMode”,
and a reference to our nib file.

Dialogs created from nibs only need a small amount of maintenance code to function because
the OS handles most of the functionality of the dialog’s controls. This maintenance is done
by a window event handler that is set up with this code:

 winEvtHandler = NewEventHandlerUPP(DoScreenModeDialog_EventHandler);
 InstallWindowEventHandler(gDialogWindow, winEvtHandler,

GetEventTypeCount(list), list, 0, &ref);

We won’t spend too much time here discussing the details of processing Macintosh dialogs
since there is plenty of other literature that describes this process, but suffice to say that our
window event handler doesn’t need to do much except check if the user clicks the OK or Quit
buttons:

Listing 2-4: The Window Event Handler
pascal OSStatus DoScreenModeDialog_EventHandler(
 EventHandlerCallRef myHandler,
 EventRef event,
 void *userData)
{

HICommand command;

 switch(GetEventKind(event))
 {

 /*******************/
 /* PROCESS COMMAND */
 /*******************/
 //
 // We only care if the user pressed the OK or Quit buttons.
 // Let the OS handle all other events.
 //

 case kEventProcessCommand:
 GetEventParameter (event,

kEventParamDirectObject,
kEventParamHICommand,

 NULL,
sizeof(command),
NULL,

21

&command);

 switch(command.commandID)
 {
 /* "OK" BUTTON */

 case 'ok ':
 QuitAppModalLoopForWindow(gDialogWindow);
 break;

 /* "QUIT" BUTTON */

 case 'quit':
 ExitToShell();
 break;
 }
 break;
 }

 return (eventNotHandledErr);
}

The checkboxes and radio buttons are handled automatically by OS X, so you don’t need to
manually deal with them like you would have had to do with the old fashioned resources on
Mac OS 9. When the dialog’s event loop terminates we’ve got some code that reads back the
control values to determine what the user selected. Reading the value of a control is simple:

 idControl.signature = 'wind';
 idControl.id = 0;
 GetControlByID(gDialogWindow, &idControl, &control);
 gPlayInWindow = GetControlValue(control);

Just remember that the control’s signature value is whatever you’ve assigned to that control
in Interface Builder. I like to choose signatures that have some meaning relevant to the
function of the control, so in the example above ‘wind’ is a logical signature for the “Play
Game in Window” checkbox as shown in Figure 2-2 below:

Chapter 2: Choosing a Video Mode 22

Figure 2-2: The “Play Game in Window” checkbox has ‘wind’ signature

We already learned how to get a list of valid video modes earlier, so now we use that list of to
build our dialog’s pop-up menu:

Listing 2-5: Building the Resolution Pop-Up Menu
void BuildResolutionMenu(void)
{
 Str255 menuStrings[MAX_VIDEO_MODES];
 short i;
 Str32 s,t;
 MenuHandle hMenu;
 Size tempSize;
 ControlID idControl;
 ControlRef control;

 /* BUILD MENU ITEM STRINGS */

 for (i=0; i < gNumVideoModes; i++)
 {
 NumToString(gVideoModeList[i].rezH, s); // “width”
 s[s[0]+1] = 'x'; // “x”
 s[0]++;
 NumToString(gVideoModeList[i].rezV, t); // “height”
 BlockMove(&t[1], &s[s[0]+1], t[0]);
 s[0] += t[0];

23

 BlockMove(&s[0], &menuStrings[i][0], s[0]+1);
 }

 /* GET MENU HANDLE FROM DIALOG */

 idControl.signature = 'rezm';
 idControl.id = 0;
 GetControlByID(gDialogWindow, &idControl, &control);
 GetControlData(control,kControlMenuPart,
 kControlPopupButtonMenuHandleTag,

sizeof(MenuHandle), &hMenu,
&tempSize);

 /* MAKE SURE MENU IS EMPTY */

 DeleteMenuItems(hMenu, 1, CountMenuItems (hMenu));

 /* ADD NEW ITEMS TO THE MENU */

 for (i = 0; i < gNumVideoModes; i++)
 AppendMenu(hMenu, menuStrings[i]);

 /* FORCE UPDATE OF MENU EXTENTS */

 SetControlMaximum(control, gNumVideoModes);
 SetControlValue(control, 1);
}

To create a menu on the Mac you simply pass each menu item’s Pascal string to the function
AppendMenu(), and building these is just a matter of converting the width and height resolu-
tion values to strings. There are many ways to work with Pascal strings on the Mac, but I’ve
always been a fan of the API calls NumToString() and BlockMove(). NumToString()
creates a Pascal string from an integer value, and BlockMove() is an easy way to copy one
Pascal string into another.

The last line of BuildResolutionMenu() calls SetControlValue() to tell the menu which
menu item is selected by default. In an actual game you would want to set this to the menu
item of the matching resolution stored in the game’s preferences so that the user doesn’t have
to keep resetting the resolution each time this dialog comes up.

25

Chapter 3: OpenGL for the Mac

All games on the Mac now use OpenGL for graphics rendering, even if the game is a 2D
sprite-based game. OpenGL provides an extremely fast and efficient way to draw images,
sprites, polygons, etc., and Apple is putting a lot into supporting and updating it as new
technologies emerge.

This book is not an OpenGL programming tutorial, so I would recommend buying the official
“OpenGL Programming Guide” and “OpenGL Reference Manual” along with some other
general OpenGL programming books like “The OpenGL Extensions Guide”. What I will
primarily be covering are the parts of OpenGL that are specific to the Mac, and techniques for
optimizing your OpenGL code for this hardware.

The sample project named “OpenGL Basics.xcode” demonstrates everything presented in this
chapter. This sample application builds on what we learned in Chapter 2 by adding a new
source file named OpenGL.c. which contains all of the new code. The new functions that
we’ll be writing all start with the prefix “OGL_” to indicate that it is part of our new OpenGL
support library.

Figure 3-1: The OpenGL Basics sample application that draws a simple square

Chapter 3: OpenGL for the Mac 26

Initializing OpenGL
The Mac-specific subset of OpenGL is called AGL (Apple GL). The function prototypes and
constants for AGL are found in the header file agl.h. We use several of these AGL functions
to initialize an OpenGL draw context:

Listing 3-1: Initializing an OpenGL Draw Context
void OGL_CreateDrawContext(void)
{
 GDHandle gdevice;
 AGLPixelFormat fmt;

 GLint attribWindow[] =
 {

 AGL_RGBA, AGL_DOUBLEBUFFER, AGL_DEPTH_SIZE, 32,
 AGL_ALL_RENDERERS, AGL_ACCELERATED, AGL_NO_RECOVERY, AGL_NONE

 };
 GLint attribFullScreen[] =
 {

 AGL_RGBA, AGL_FULLSCREEN, AGL_DOUBLEBUFFER, AGL_DEPTH_SIZE, 32,
 AGL_ALL_RENDERERS, AGL_ACCELERATED, AGL_NO_RECOVERY, AGL_NONE

 };

 gdevice = GetMainDevice(); // get the main display

 /***********************/
 /* CHOOSE PIXEL FORMAT */
 /***********************/

 /* PLAY IN WINDOW */

 if (gPlayInWindow)
 fmt = aglChoosePixelFormat(&gdevice, 1, attribWindow);

 /* FULL-SCREEN */
 else
 fmt = aglChoosePixelFormat(&gdevice, 1, attribFullScreen);

 if ((fmt == nil) || (aglGetError() != AGL_NO_ERROR))
 DoFatalAlert("\pCannot make a draw context!");

 /**********************/
 /* CREATE AGL CONTEXT */
 /**********************/

 gAGLContext = aglCreateContext(fmt, nil);
 if ((gAGLContext == nil) || (aglGetError() != AGL_NO_ERROR))
 DoFatalAlert("\paglCreateContext failed!");

27

 /* PLAYING IN A WINDOW */

 if (gPlayInWindow)
 {
 gAGLWin = (AGLDrawable)GetWindowPort(gGameWindow);
 aglSetDrawable(gAGLContext, gAGLWin);
 }

 /* PLAYING FULL-SCREEN */
 else
 {
 gAGLWin = nil;
 aglEnable(gAGLContext, AGL_FS_CAPTURE_SINGLE);
 aglSetFullScreen(gAGLContext, 0, 0, 0, 0);
 }

 /* ACTIVATE THE CONTEXT */

 aglSetCurrentContext(gAGLContext);

 /* NO LONGER NEED PIXEL FORMAT */

 aglDestroyPixelFormat(fmt);
}

The first call made is to aglChoosePixelFormat() where we pass in an array of constants
that define the attributes of the draw context:

 fmt = aglChoosePixelFormat(&gdevice, 1, attribFullScreen);

A different list of characteristics is passed to aglChoosePixelFormat() depending on
whether we are rendering full-screen or into a window. It is important to use all of these
parameters, and only these parameters to achieve the maximum rendering performance from
OpenGL. Here is a brief description of what each AGL attribute does:

AGL_RGBA
This tells OpenGL that we want our draw context to be in RGBA format, however, it should
be noted that OpenGL ignores the alpha component even though all of the buffers created for
the draw context are 32-bit, and thus, do have an alpha byte.

AGL_FULLSCREEN
This lets OpenGL know that we want to go full-screen so that it can optimize its pipeline to
make the best use of that. Full-screen contexts can benefit from hardware page flipping,

Chapter 3: OpenGL for the Mac 28

thereby avoiding a slower pixel blitting that would otherwise be required to copy the back
buffer to the screen.

AGL_DOUBLEBUFFER
This lets OpenGL know that we want to render double buffered. That means there are two
drawing buffers: one that’s currently being draw into and one that is currently being dis-
played. OpenGL page flips between the two buffers to get flicker-free animation.

AGL_DEPTH_SIZE
This constant is followed by a number that is either 16 or 32 depending on the desired bit-
depth of the z-buffer. These days it is recommended that you always use a 32-bit z-buffer
since VRAM is plentiful, and 16-bit z-buffers often result in drawing artifacts. Only use a
16-bit z-buffer if you’re running low on VRAM and need to conserve it.

AGL_ALL_RENDERERS
This doesn’t do anything particularly useful from the game programmer’s point of view, but
internally to OpenGL it lets the system know that all rendering engines are acceptable to the
application.

AGL_ACCELERATED
This eliminates any software-only renderers from being chosen by OpenGL. It insures that
only the fast, hardware renderers will be allowed.

AGL_NO_RECOVERY
This lets OpenGL follow an optimized pipeline by disabling all failure recovery systems.
Typically OpenGL will resort to a software renderer if something were to go wrong with a
hardware renderer (such as running out of VRAM), but with this option enabled OpenGL will
simply fail instead.

AGL_NONE
You must put this at the end of the attributes list to indicate the end of the list.

The pixel format object is now used to create the draw context:

 gAGLContext = aglCreateContext(fmt, nil);

After creating the context we need to activate it, but there are two different ways to create the
draw context depending on if it’s going to be associated with a full-screen display or with a
window. To activate a context for a window we do this:

 gAGLWin = (AGLDrawable)GetWindowPort(gGameWindow);
 aglSetDrawable(gAGLContext, gAGLWin);
 aglSetCurrentContext(gAGLContext);

29

To activate the context for a full-screen display we do this:

 aglEnable(gAGLContext, AGL_FS_CAPTURE_SINGLE);
 aglSetFullScreen(gAGLContext, 0, 0, 0, 0);
 aglSetCurrentContext(gAGLContext);

The input parameters for aglSetFullScreen() are actually the display mode parameters
width, height, and frequency; however, we pass 0’s for all of these since we’ve already
manually set our display (see Chapter 2). I don’t recommend setting those display parameters
with aglSetFullScreen() because each time you create and delete a draw context the screen
will switch. By setting the display mode manually the way we did earlier, you can create and
destroy OpenGL draw contexts as often as you want in your game, and there won’t be any
visual “glitching”. Additionally, manually switching the display gives you more control over
it later should you ever need to do things with it.

Drawing an OpenGL Scene
With the draw context created and active we are now free to start rendering some graphics
into it. This is where a few more AGL functions need to be used.

Listing 3-2: Drawing the Scene
void OGL_DrawScene(void)
{
 /* MAKE OUR CONTEXT THE ACTIVE ONE */

 aglSetCurrentContext(gAGLContext);

 /* CLEAR THE DRAW BUFFER & Z-BUFFER */

 glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);

 /* DO OUR GEOMETRY DRAWING HERE */

 DrawSceneGeometry();

 /* END RENDER & SWAP THE BUFFER TO MAKE IT VISIBLE */

 aglSwapBuffers(setupInfo->drawContext);
}

Chapter 3: OpenGL for the Mac 30

Most games only have one draw context active at any given time, but it’s still a good idea to
call aglSetCurrentContext() each pass through your render loop just to be safe. Before we
start drawing anything we need to make sure that our drawing buffer and z-buffer are both
cleared:

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

After this you are safe to start doing all your own OpenGL drawing to render your scene.
When you’re done submitting your geometry call aglSwapBuffers() to cause a page flip to
occur.

 aglSwapBuffers(setupInfo->drawContext);

If you’re in full-screen mode this page flip will be a fast hardware toggle, but if you’re
playing the game in a window then the drawing buffer gets blitted to the window instead.

An important thing to mention about aglSwapBuffers() is that the buffers are not necessar-
ily swapped the instant you call this function. Modern video cards will queue up all of your
drawing commands including the swap buffer command. Chances are that the video card is
still drawing your geometry when you make this call, so it simply puts the swap command
into its queue, and as soon as the video card is done drawing it’ll execute the swap command.
The beauty of this is that your program can proceed to calculating the next frame’s data while
the previous frame is being drawn by the video card – it’s getting two things done simultane-
ously.

Working with Text in OpenGL
AGL has some built-in utility functions for easily displaying text in an OpenGL context.
This is extremely useful for quick debugging and statistical displays. I use this feature in all
of my games to display the frames per second, polygon counts, and other debug info.
Working with text in AGL is very easy, and you only need to write a handful of functions to
support it.

Listing 3-3: Initializing Fonts for OpenGL
GLuint gFontList;

void OGL_InitFont(void)
{
 GLboolean success;

31

 gFontList = glGenLists(256);

 success = aglUseFont(gAGLContext, // our draw context

kFontIDMonaco, // font to use
bold, // style of font
9, // point size of font
0, // first character
256, // # characters
gFontList); // list to store font in

 if (!success)
 DoFatalAlert("\paglUseFont failed");
}

To create a font for AGL we first create an empty OpenGL “list” to contain bitmaps of all of
the font characters:

 gFontList = glGenLists(256);

Next, our OGL_InitFont() function calls aglUseFont() which automatically generates the
character bitmaps for each character in the requested font. You can specify which font you
want to use, along with all the usual font parameters such as style and point size. Be careful
about which font you choose to use because not all users may have your desired font in-
stalled. I always use Monaco since that’s a standard Mac font, however, I’ve seen many
situations where users have uninstalled Monaco from their systems and that causes some of
our games to break. My standard reply to them is “Monaco is a system font which is required
by many applications, so reinstall it.”

To draw a string with this font, there are only three simple calls to make:

 glRasterPos2i(x, y);
 glListBase(gFontList);
 glCallLists(stringLength, GL_UNSIGNED_BYTE, cString);

Remember, however, that what’s actually going on under the hood is that OpenGL is render-
ing a series of bitmaps using the current rendering state. Therefore, it is important to set the
OpenGL state to something consistent as is done in this function:

Listing 3-4: Drawing a String with AGL Fonts
void OGL_DrawString(Str255 s, GLint x, GLint y)
{
 /* SET THE DRAWING MATRICES */

Chapter 3: OpenGL for the Mac 32

 glMatrixMode (GL_MODELVIEW);
 glLoadIdentity();
 glMatrixMode (GL_PROJECTION);
 glLoadIdentity();
 glOrtho(0, 640, 0, 480, -10.0, 10.0);

 /* SET SOME STATE VALUES */

 glDisable(GL_LIGHTING);
 glDisable(GL_TEXTURE_2D);
 glColor4f (1,1,1,1);

 /* SET COORDINATE TO DRAW STRING */

 glRasterPos2i(x, 480-y);

 /* DRAW THE STRING */

 glListBase(gFontList);
 glCallLists(s[0], GL_UNSIGNED_BYTE, &s[1]);
}

The most important thing that needs to be done before drawing the string is setting the
projection matrix to a nice, flat, orthographic matrix so that we can draw the string to a
specified screen coordinate. I like to set my ortho matrix to 640x480. Keep in mind, how-
ever, that this is not 640x480 in actual screen pixel coordinates, but rather it is 640x480 in
world-space that gets scaled by OpenGL to whatever your true screen size is. An x-
coordinate of 320 will always be in the middle of the screen no matter what resolution the
screen is.

 glOrtho(0, 640, 0, 480, -10.0, 10.0);

After this matrix is set, lighting and texturing are turned off, and the current color is set to
white. To set the coordinates of the first character in the string do this:

 glRasterPos2i(x, 480-y);

Drawing the string is done by setting the font list as the current list, and then performing the
draw with the glCallLists() function:

 glListBase(gFontList);
 glCallLists(s[0], GL_UNSIGNED_BYTE, &s[1]);

33

Displaying Windows in a Full-Screen Context
There may be times while your full-screen game is running when you need to bring up a
window, say, for a warning message, or maybe for a preferences dialog. These windows
cannot be brought up safely when you’ve got an OpenGL draw context running in full-screen
mode. In most cases, these windows will be drawn behind the OpenGL context so you
cannot see them at all. It will appear that your application has locked up even though it
hasn’t.

So, before bringing up any windows or dialogs we need to enter a window-safe mode, and
when we’re done with that window we can exit the window-safe mode. To do this we’ll need
two new functions, Enter2D() and Exit2D():

Listing 3-5: Entering 2D Window Mode from a Full-Screen Context
void Enter2D(void)
{
 /* DON’T DO ANYTHING IF IN WINDOWED MODE OR NO DISPLAY YET */

 if (gPlayInWindow || (gCGDisplayID == -1))
 return;

 InitCursor(); // make sure there’s a cursor

 /* NEED TO UN-CAPTURE THE DISPLAY */

 CGDisplayRelease(gCGDisplayID);

 /* DISABLE GL */

 if (gAGLContext)
 {
 glFlush();
 glFinish();

 aglSetDrawable(gAGLContext, nil);

 glFlush();
 glFinish();
 }
}

The Enter2D() function does two basic things: it releases the display and it disables
OpenGL’s full-screen draw context. The function CGDisplayRelease() will not change the
display’s mode at all – it will remain at the current resolution and color depth. The
aglSetDrawable() call will then make the OpenGL drawing pane disappear so that we can

Chapter 3: OpenGL for the Mac 34

see the Finder’s desktop and interact with anything there. We’re now free to bring up
dialogs, work with menus, run other applications, etc.

Since the video mode stays at its current setting, be sure that your game’s dialogs are never
larger than the minimum screen resolution that your game supports. For example, if you’re
playing in 640x480 mode and you try to bring up a dialog that’s 800x600 it obviously isn’t
going to fit.

Once we’re ready to go back to the game, we need to exit the 2D mode and return to our full-
screen 3D mode by doing the reverse of what we did in Listing 3-7:

Listing 3-6: Returning to the Full-Screen Context
void Exit2D(void)
{
 /* DON’T DO ANYTHING IF IN WINDOWED MODE OR NO DISPLAY YET */

 if (gPlayInWindow || (gCGDisplayID == -1))
 return;

 HideCursor(); // make cursor go away

 /* RE-CAPTURE THE DISPLAY */

 CGDisplayCapture(gCGDisplayID);

 /* RE-ENABLE GL */

 if (gAGLContext)
 aglSetFullScreen(gAGLContext, 0, 0, 0, 0);
}

The first important place we’ll put these calls is in our game engine’s DoAlert() and
DoFatalAlert() functions since those can bring up 2D dialogs at any time:

Listing 3-7: Using Enter2D() and Exit2D() to Display Alerts
void DoFatalAlert(Str255 s)
{
 SInt16 alertItemHit;

 Enter2D(); // make sure we can see this

 StandardAlert(kAlertNoteAlert, s, NULL, NULL, &alertItemHit);

35

 ExitToShell();
}

void DoAlert(Str255 s)
{
 SInt16 alertItemHit;

 Enter2D(); // make sure we can see this

 StandardAlert(kAlertNoteAlert, s, NULL, NULL, &alertItemHit);

 Exit2D(); // return to full-screen
}

37

Chapter 4: OpenGL Optimizations

Getting the most out of computer hardware is what game developers have strived for since
the dawn of the CPU, and even though computers are blazingly fast these days, we still need
to squeeze the performance as tight as we can. There are many things that you can do in
OpenGL to improve performance. Some optimizations yield minor results while others will
yield huge results.

Macro Optimizations
The smart folks at Apple have given us a way to make our OpenGL function calls just a little
bit faster by removing one level of indirection in each call that we make. Normally, when
you call an OpenGL function such as glEnable(), this glEnable() function doesn’t actually
do any enabling. What it’s really doing is looking up the renderer’s internal enable()
function and then it jumps to that. Different renderers will have different internal enable
functions, so if you’re running on ATI hardware then glEnable() is really just looking up
and calling the enable() function in the ATI driver.

The AGLContex structure that defines our draw context contains the entire jump table for
every OpenGL function supported by the renderer, so there’s no reason that your code can’t
do that function lookup and jump by itself, thus saving that extra branch to the bogus
glEnable() function. If you look in the aglmacro.h header file you’ll see every OpenGL
function call defined as a macro. Each macro takes the draw context and finds the jump
vector to the actual OpenGL function in question. For example, the macro for glEnable()
looks like this:

#define glEnable(cap) (*agl_ctx->disp.enable)(agl_ctx->rend, cap)

To use the AGL macros you first need to include the aglmacro.h header file at the top of
every .c file that you want optimized. Once you include this header in a file, all of the
OpenGL calls you make in that file will be done with these macros instead of calling the
wrapper functions.

 #include <AGL/aglmacro.h>

Next, at the top of every function that makes an OpenGL call you must include this line of
code that assigns your draw context to the agl_ctx variable that the macros rely on:

AGLContext agl_ctx = gAGLContext;

Chapter 4: OpenGL Optimizations 38

Here is a very simple example of this in action:

Listing 4-1: Example Using AGL Macros
#include <AGL/aglmacro.h>

void DoStuff(void)
{
 AGLContext agl_ctx = gAGLContext;

 glDisable(GL_RESCALE_NORMAL);
 glDisable(GL_DITHER);
 glCullFace(GL_BACK);
 glEnable(GL_ALPHA_TEST);
}

That’s all there is to it! Your OpenGL function calls remain the same as before, they’ll just
be a little bit faster. All those glDisable(), glEnable(), etc. calls look like regular function
calls, but with aglmacro.h they’re really just macros that branch directly to your renderer’s
internal functions.

We won’t be using the macros for the remaining examples in this book since I want to
simplify things as much as possible in the code, but when you start building your own games
I’d recommend you use this optimization.

Caching the OpenGL State
This next optimization is a bit of a hassle to implement, but it is actually very, very important.
Certain video card drivers will suffer a serious drop in performance if you’re constantly
changing the OpenGL state. Even just calling glColor() can cause a serious pipeline stall,
so you always want to be sure that you don’t modify an OpenGL state value unless that state
value has actually changed. For example, if the current color state is already 0,0,0,0 then
don’t call glColor4f(0,0,0,0) again since it isn’t needed, and it may trigger a stall in the
render pipeline.

So, instead of calling glColor() all the time, you’ll want to cache the RGBA color values in
your own variables, and then test any new color commands with those values to see if they’ve
changed. If and only if they’ve changed should you proceed and call glColor(). The same
goes for all glEnable() and glDisable() calls. Texture unit calls like glActiveTexture()
and glClientActiveTexture() also cause an OpenGL state change, so those should also be
cached. As a general rule, cache anything that causes an OpenGL state change.

39

The sample project “OpenGL State Caching.xcode” has an updated version of the OpenGL.c
source file that includes many example state-changing functions. For example, this function
is used to enable lighting:

Listing 4-2: Enabling Lighting
Boolean gMyState_Lighting;

void OGL_EnableLighting(void)
{
 if (!gMyState_Lighting)
 {
 glEnable(GL_LIGHTING);
 gMyState_Lighting = true;
 }
}

The variable gMyState_Lighting is the cached lighting state. If it is already true then
there’s obviously no need to re-enable the lighting since we know that it’s already enabled.
We only call glEnable() if gMyState_Lighting is false.

The function to disable lighting is almost identical except that it only calls glDisable() if
gMyState_Lighting is true:

Listing 4-3: Disabling Lighting
void OGL_DisableLighting(void)
{
 if (gMyState_Lighting)
 {
 glDisable(GL_LIGHTING);
 gMyState_Lighting = false;
 }
}

Other caching functions are a little more complex, such as the function to set the current
color:

Listing 4-4: Setting the Color
OGLColorRGBA gMyState_Color;

void OGL_SetColor4f(float r, float g, float b, float a)
{

Chapter 4: OpenGL Optimizations 40

 if ((r != gMyState_Color.r) ||
 (g != gMyState_Color.g) ||
 (b != gMyState_Color.b) ||
 (a != gMyState_Color.a))
 {
 glColor4f(r, g, b, a);

 gMyState_Color.r = r;
 gMyState_Color.g = g;
 gMyState_Color.b = b;
 gMyState_Color.a = a;
 }
}

Here we cache the RGBA values, and check each of them before we allow glColor4f() to
be called. This insures that we only call the OpenGL function if one of the color components
actually changed.

The important thing to remember when caching the state is that you must be consistent. You
cannot choose to call OGL_SetColor4f() some of the time, and then other times call
glColor4f() directly. If your cached state variables lose track of the current values then a
cascade of problems will appear as your game runs.

Pushing & Popping the OpenGL State
Very often in your code you will need to preserve the current OpenGL state, modify the state
to do some work, and then restore the state as you continue on your way. OpenGL has a
built-in way to do this with the glPushAttrib() and glPopAtrib() functions, but you
should never ever use these functions in your code! Yes, this is an easy way to save any state
information you want, but internally this destroys your pipeline performance for the same
reasons that doing any unnecessary state change is bad.

The preferred way to save and restore the current state is to manually do it yourself with the
use of your state caching functions. Which state parameters you save is up to you, but the
sample function below shows what I like to use in my games:

Listing 4-5: Pushing the State
void OGL_PushState(void)
{
 int i;

 /* PUSH MATRIES WITH OPENGL */

41

 glMatrixMode(GL_PROJECTION);
 glPushMatrix();
 glMatrixMode(GL_MODELVIEW);
 glPushMatrix();

 /* SAVE OTHER INFO */

 i = gStateStackIndex++; // get stack index and increment

 if (i >= STATE_STACK_SIZE)
 DoFatalAlert("\pstack overflow");

 gStateStack_Lighting[i] = gMyState_Lighting;
 gStateStack_CullFace[i] = gMyState_CullFace;
 gStateStack_DepthTest[i] = gMyState_DepthTest;
 gStateStack_Normalize[i] = gMyState_Normalize;
 gStateStack_Texture2D[i] = gMyState_Texture2D;
 gStateStack_Fog[i] = gMyState_Fog;
 gStateStack_Blend[i] = gMyState_Blend;
 gStateStack_Color[i] = gMyState_Color;
 gStateStack_DepthMask[i] = gMyState_DepthMask;

 gStateStack_BlendSrc[i] = gMyState_BlendFuncS;
 gStateStack_BlendDst[i] = gMyState_BlendFuncD;
}

As I said above, using the glPushAttrib() function is bad, however using the OpenGL
matrix push/pop calls glPushMatrix() and glPopMatrix() for preserving and restoring the
states of the matrices is perfectly fine. Just be aware that there is a limit to the matrix stack’s
size, and if you exceed that size you will generate a GL_STACK_OVERFLOW error. The matrix
stacks are large enough in the Mac implementation of OpenGL that I’ve never had a stack
overflow ever occur, but if you want to be safe you can determine the stack sizes for the
various matrices by doing this:

GLint modelViewStackDepth;
GLint projectionStackDepth;

glGetIntergerv(GL_MODELVIEW_STACK_DEPTH, modelViewStackDepth);
glGetIntergerv(GL_PROJECTION_STACK_DEPTH, modelViewStackDepth);

After pushing the matrices onto the matrix stack we save our current state variables into our
own private stacks. Then, to restore the state we pop all the data off of these stacks like so:

Chapter 4: OpenGL Optimizations 42

Listing 4-6: Restoring the State
void OGL_PopState(void)
{
 int i;

 /* RETREIVE OPENGL MATRICES */

 glMatrixMode(GL_MODELVIEW);
 glPopMatrix();
 glMatrixMode(GL_PROJECTION);
 glPopMatrix();
 glMatrixMode(GL_MODELVIEW);

 /* GET STATE INFO */

 i = --gStateStackIndex; // dec stack index

 if (i < 0)
 DoFatalAlert("\pstack underflow!");

 if (gStateStack_Lighting[i]) // restore lighting
 OGL_EnableLighting();
 else
 OGL_DisableLighting();

 if (gStateStack_CullFace[i]) // restore backface culling
 OGL_EnableCullFace();
 else
 OGL_DisableCullFace();

 if (gStateStack_DepthTest[i]) // restore depth test
 OGL_EnableDepthTest();
 else
 OGL_DisableDepthTest();

 if (gStateStack_Normalize[i]) // restore normalizing
 OGL_EnableNormalize();
 else
 OGL_DisableNormalize();

 if (gStateStack_Texture2D[i]) // restore texture state
 OGL_EnableTexture2D();
 else
 OGL_DisableTexture2D();

 if (gStateStack_Blend[i]) // restore blending mode
 OGL_EnableBlend();
 else
 OGL_DisableBlend();

43

 if (gStateStack_Fog[i]) // restore fog state
 OGL_EnableFog();
 else
 OGL_DisableFog();

 // restore depth mask state
 OGL_DepthMask(gStateStack_DepthMask[i])

 // restore blending mode
 OGL_BlendFunc(gStateStack_BlendSrc[i],
 gStateStack_BlendDst[i]);

 // restore color state
 OGL_SetColor4fv(&gStateStack_Color[i]);
}

The Transform Hint
Apple has created an OpenGL “hint” state parameter that can improve the speed of transfor-
mation calculations, but at the cost of some accuracy:

 glHint(GL_TRANSFORM_HINT_APPLE, GL_FASTEST);

Since games don’t need 100% precise mathematical calculations (we’re not trying to put a
man on Mars here), you should always have this hint set to GL_FASTEST. You’ll almost never
be able to see any visual difference with this, but on extremely rare occasions a vertex might
be out of place by 1 pixel – a fair price to pay for a performance boost.

Normals
When you have a scaling component in your Model-View matrix (such as from a glScale()
call), any vertex normals will get scaled during the transform calculations. This would cause
your lighting to become distorted, so we always want vertex normals to be normalized to a
length of 1.0. Luckily, OpenGL can re-normalize any vertex normals after a transformation,
but doing so hurts performance. To enable this feature you’d do this:

 glEnable(GL_NORMALIZE);

All of your 3D model data should have vertex normals that have been pre-normalized.
Therefore, if you know that you are not doing any scaling on a model when you render it then
you can tell OpenGL to disable the automatic re-normalization code:

 glDisable(GL_NORMALIZE);
 glDisable(GL_RESCALE_NORMAL);

Chapter 4: OpenGL Optimizations 44

If it is necessary to scale a model, you can still get some optimization by just enabling
GL_RESCALE_NORMAL:

 glEnable(GL_RESCALE_NORMAL);

What GL_NORMALIZE does is to entirely re-normalize the vector – a costly calculation, but
GL_RESCALE_NORMAL simply resizes the normal back to a length of 1.0. This is faster than
doing a full-fledged normalize on that vector, but it only works when the scaling is uniform.
That means that the x. y, and z components of the scale must all be the same value. If you’re
doing a non-uniform scale then the only option is to let OpenGL do a full vector normalize by
enabling GL_NORMALIZE. So, you have to be smart in your code and know when to enable and
when to disable these various forms of normalizing states to get the best performance.

Colors
Always be sure to have this code in your draw context initialization:

 glColorMaterial(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE);
 glEnable(GL_COLOR_MATERIAL);

This allows you to use glColor() to set the state’s color instead of using the slower
glMaterial() function.

Reading Pixels
You should never ever read data out of the draw buffer or the z-buffer! Doing this
causes the entire rendering pipeline to stall big-time, thus killing your performance. You can
literally chop your game’s frame rate in half by reading a single pixel from these buffers.
Remember that the 3D hardware is still rendering your geometry long after you’re done
submitting it; therefore, if you try to read a pixel from the frame buffer, OpenGL has to sit
there and wait for the scene to finish drawing before it can return the pixel value to you.

Know when to use glBegin/End or Vertex Arrays
Whenever you draw complex models you should always use Vertex Arrays to submit your
geometry to OpenGL, however, if you’re only drawing small things like sprites then it is still
slightly more efficient to use glBegin(). The reason for this is that the internal overhead
involved in processing Vertex Arrays is disproportionately high if you’re only submitting a
handful of vertices.

45

Listing 4-7: Drawing a Sprite with Vertex Arrays
void DrawSpriteWithVertexArray(void)
{
 OGLPoint3D points[4] =
 {
 -1,-1,0, -1,1,0, 1,1,0, 1,-1,0
 };

 OGLTextureCoord uvs[4] =
 {
 0,0, 0,1, 1,1, 1,0
 };

 GLint quadVerts[4] = {0,1,2,4};

 /* INIT THE VERTEX ARRAYS */

 glEnableClientState(GL_VERTEX_ARRAY); // point to points
 glVertexPointer(3, GL_FLOAT, 0, points);

 glTexCoordPointer(2, GL_FLOAT, 0,data->uvs[0]);
 glEnableClientState(GL_TEXTURE_COORD_ARRAY); // enable uv arrays

 glDisableClientState(GL_COLOR_ARRAY); // no vertex colors
 glDisableClientState (GL_NORMAL_ARRAY); // no normals

 OGL_SetColor4f(1,1,1,1);

 /* SUBMIT THE VERTEX ARRAYS */

 glDrawElements(GL_QUADS, 4, GL_UNSIGNED_INT, quadVerts);
}

Listing 4-8: Drawing a Sprite with glBegin
void DrawSpriteWithBeginEnd(void)
{
 OGL_SetColor4f(1,1,1,1);

 glBegin(GL_QUADS);
 glTexCoord2f(0,1); glVertex2f(-1, -1);
 glTexCoord2f(1,1); glVertex2f(-1, 1);
 glTexCoord2f(1,0); glVertex2f(1, 1);
 glTexCoord2f(0,0); glVertex2f(1, -1);
 glEnd();
}

Chapter 4: OpenGL Optimizations 46

The code for drawing Vertex Arrays in listing 4-7 appears much more complex than the code
using glBegin() in Listing 4-8, however, if you count the number of OpenGL function calls
you’ll see that it’s actually less in the Vertex Array code. Despite this fact, using glBegin()
is still more efficient because of the way that OpenGL deals with vertex array data. Inter-
nally, there is more overhead with Vertex Arrays.

There is another optimization for Vertex Arrays that is the mother lode of all OpenGL
optimizations called Vertex Array Range. However, this optimization is a huge topic so it
has it’s own chapter in this book. For more information see Chapter 6.

Optimizing VRAM
A well-optimized piece of code may still run unexpectedly slow if you’re trying to cram too
much texture data into a video card with too little VRAM. If you’re rendering a complex
scene into a large frame buffer then you might not be leaving enough VRAM for all of the
scene’s textures to fit. This causes textures to dynamically get paged in and out of VRAM,
and paging anything into VRAM is slow.

So, it’s important for our game to know how much VRAM it has to work with:

Listing 4-9: Determining a Display’s VRAM

void CalcDisplayVRAM(void)
{
 io_service_t port;
 CFTypeRef classCode;

 /* LOOK UP MAIN DISPLAY’S VRAM */

 port = CGDisplayIOServicePort(CGMainDisplayID());
 classCode = IORegistryEntryCreateCFProperty(port,

CFSTR(kIOFBMemorySizeKey),
kCFAllocatorDefault,
kNilOptions);

 /* EXTRACT VALUE */

 if (CFGetTypeID(classCode) == CFNumberGetTypeID())
 {
 CFNumberGetValue(classCode, kCFNumberSInt32Type, &gDisplayVRAM);
 }
 else

{

47

 // if failed, then just assume 64MB VRAM to be safe
 gDisplayVRAM = 0x4000000;
 }
}

With the value gDisplayVRAM you can make tweaks to your game based on various VRAM
quantities. For example, in Nanosaur 2 we limit the maximum screen resolution that the user
can choose based on this value. If the display only has 32MB of VRAM then we limit the
maximum resolution to 1024x768 to insure that there will be enough VRAM remaining to
hold textures. Additionally, we avoid loading certain large textures into VRAM at all if the
display is below a certain threshold, so things like sky clouds don’t get drawn in low-VRAM
situations.

49

Chapter 5: PowerPC Math Optimizations

The PowerPC chip has some nice capabilities that can speed up certain mathematical calcula-
tions for us. If you use Shark to profile your game’s performance you may learn about some
fairly low level optimizations dealing with the CPU, but in this chapter I’m going to discuss
two fairly major optimizations that you should use in your games:

AltiVec for Faster Matrix Multiplies
AltiVec is the vector processing unit on the PowerPC chip, and it has a lot of great uses.
Unfortunately, those uses are fairly limited in the world of 3D programming. The one area
where AltiVec is easy to implement yet still yields a huge performance boost is in matrix
multiplication. Multiplying 4x4 matrices is notoriously slow due to the huge number of
calculations and memory read/writes that are needed. AltiVec can do it much, much faster by
essentially doing four calculations at a time.

Not all PowerPC chips come with AltiVec, however. The G4 and G5’s do, but the G3’s and
earlier do not, so we must check for the presence of AltiVec when we launch our game and
then handle the matrix multiplies in either the traditional way or with AltiVec if it is present.
To determine if AltiVec is available we need a function like this:

Listing 5-1: Checking for AltiVec
void CheckForAltiVec(void)
{
 long response;
 u_long flags;

 gAltiVec = false; // assume no altivec

 if (!Gestalt(gestaltNativeCPUtype, &response))
 {
 // skip if on G3 or go into this if > G3
 if (response > gestaltCPU750)
 {
 // see if AltiVec available
 Gestalt(gestaltPowerPCProcessorFeatures,(long *)&flags);
 gAltiVec = ((flags & (1 <<
 gestaltPowerPCHasVectorInstructions)) != 0);
 }
 }
}

Chapter 5: PowerPC Math Optimizations 50

You might think that the first Gestalt() test isn’t needed, but it is. Testing for vector
instructions on old Macintoshes tends to generate errors or incorrect results, so we first check
for PowerPC 750’s which are the G3’s. Only if the CPU is newer can we test for the pres-
ence of vector instructions.

Next we need to write our Matrix Multiply function, but first be sure that you have AltiVec
enabled in Xcode:

Figure 5-1: Enabling AltiVec in Xcode

Listing 5-2: The Matrix Multiply Function
void OGLMatrix4x4_Multiply(const OGLMatrix4x4 *mA,

const OGLMatrix4x4 *mB,
OGLMatrix4x4 *result)

{
 if (gAltiVec)
 OGLMatrix4x4_Multiply_AltiVec(mA, mB, result);
 else
 OGLMatrix4x4_Multiply_Float(mA,mB, result);
}

51

We must do the AltiVec and float versions of the matrix multiply in separate functions. This
is very important! Mixing AltiVec and regular floating-point code in the same function causes
massive stack thrashing which kills any performance we hope to gain here. The AltiVec
version is shown below:

Listing 5-3: Doing 4x4 Matrix Multiplication with AltiVec
static void OGLMatrix4x4_Multiply_AltiVec(const OGLMatrix4x4 *mA,

const OGLMatrix4x4 *mB,
OGLMatrix4x4 *result)
{
 vector float A1,A2,A3,A4, B1, B2, B3, B4;
 vector float zeroF = (vector float) vec_splat_u32(0);
 vector float C1, C2, C3, C4;

 /* LOAD MATRIX A */

 A1 = vec_ld(0, (float*) mA);
 A2 = vec_ld(16, (float*) mA);
 A3 = vec_ld(32, (float*) mA);
 A4 = vec_ld(48, (float*) mA);
 B1 = vec_ld(0, (float*) mB);
 B2 = vec_ld(16, (float*) mB);
 B3 = vec_ld(32, (float*) mB);
 B4 = vec_ld(48, (float*) mB);

 //Do the first scalar x vector multiply for each row
 C1 = vec_madd(vec_splat(A1, 0), B1, zeroF);
 C2 = vec_madd(vec_splat(A2, 0), B1, zeroF);
 C3 = vec_madd(vec_splat(A3, 0), B1, zeroF);
 C4 = vec_madd(vec_splat(A4, 0), B1, zeroF);

 //Accumulate in the second scalar x vector multiply for each row
 C1 = vec_madd(vec_splat(A1, 1), B2, C1);
 C2 = vec_madd(vec_splat(A2, 1), B2, C2);
 C3 = vec_madd(vec_splat(A3, 1), B2, C3);
 C4 = vec_madd(vec_splat(A4, 1), B2, C4);

 //Accumulate in the third scalar x vector multiply for each row
 C1 = vec_madd(vec_splat(A1, 2), B3, C1);
 C2 = vec_madd(vec_splat(A2, 2), B3, C2);
 C3 = vec_madd(vec_splat(A3, 2), B3, C3);
 C4 = vec_madd(vec_splat(A4, 2), B3, C4);

 //Accumulate in the fourth scalar x vector multiply for each row
 C1 = vec_madd(vec_splat(A1, 3), B4, C1);
 C2 = vec_madd(vec_splat(A2, 3), B4, C2);
 C3 = vec_madd(vec_splat(A3, 3), B4, C3);
 C4 = vec_madd(vec_splat(A4, 3), B4, C4);

Chapter 5: PowerPC Math Optimizations 52

 vec_st(C1, 0, (float*) result);
 vec_st(C2, 16, (float*) result);
 vec_st(C3, 32, (float*) result);
 vec_st(C4, 48, (float*) result);
}

Knowing how the above code actually works is not really important since it’s unlikely that
you’ll ever use AltiVec for anything else in your game, but if you do want to learn more
about AltiVec programming then Apple has lots of information here:

http://developer.apple.com/hardware/ve/

What is important, however, is knowing that the OGLMatrix4x4 structure must be aligned to
16-bytes since all AltiVec memory accesses are 16-byte aligned. To do this we build the
matrix structure as a union with an AltiVec vector type:

typedef union
{
 GLfloat value[16];
 vector float v[4];
}OGLMatrix4x4;

With this structure we can still access the individual matrix elements which are 32-bit float
values, yet the entire structure is guaranteed to always be 16-byte aligned so that we can work
with it using AltiVec.

Fast Vector Normalizing
The PowerPC chip has another useful capability in the form of a special opcode called
frsqrte – Floating point Reciprocal Square Root Estimate. This opcode calculates the value
1.0 / sqrt(n) in about 1 cycle. To do this calculation without frsqrte typically costs
around 50 cycles.

The drawback, however, is that frsqrte only calculates an estimate value which is not
particularly precise. Luckily, there is a method for improving the accuracy of the results
called Newton-Rhapson refinement, and the following example shows how this all works:

Listing 5-4: Fast Vector Normalizing with frsqrte
void OGL_Vector3D_NormalizeFast(float x, float y, float z,

OGLVector3D *outV)
{

53

float len;
float isqrt, temp1, temp2;

 /* CALC LENGTH OF INPUT VECTOR */

 len = (x * x) + (y * y) + (z * z);

 /* CALCULATE 1.0 / SQRT(len) ESTIMATE */

 isqrt = __frsqrte (len);

 /* REFINE THE ESTIMATE WITH NEWTON-RHAPSON */

 temp1 = len * -.5f;
 temp2 = isqrt * isqrt;
 temp1 *= isqrt;
 isqrt *= (float)(3.0/2.0);
 len = isqrt + temp1 * temp2;

 /* RETURN NORMALIZED VECTOR */

 outV->x = x * len;
 outV->y = y * len;
 outV->z = z * len;
}

Even with the extra overhead of the Newton-Rhapson refinement, this method of normalizing
vectors is up to 16x faster than the more accurate method with the sqrt() function. I cannot
stress enough, however, that you should not use this for calculations that require high
accuracy. For example, when I was developing the game “Enigmo” I couldn’t understand
why the collision physics were behaving so strangely when water droplets would bounce off
of objects. After a few hours of investigating I discovered that the anomaly was a result of
using frsqrte to normalize the bounce vectors during the collision detection. This caused a
domino effect of errors in the physics math. This optimization is best used for normalizing
things like vertex normals and other things that don’t need high accuracy.

To use the frsqrte opcode (or any other PowerPC intrinsic) like we did in Listing 5-4,
you’ve got to include a special header file in your Xcode project:

 #include <ppc_intrinsics.h>

This wasn’t necessary with CodeWarrior since the intrinsics were built into the CodeWarrior
compiler, but with Xcode you need to include that header since it’s actually a collection of
macros that build the intrinsics as assembly code. This file is included in our sample code’s
precompiled header file, MyPCH.pch.

Chapter 5: PowerPC Math Optimizations 54

It should also be noted that the frsqrte opcode does not exist on the PowerPC 601, but if
you’re still writing games to run on a PowerPC 601 then you should seek professional
therapy.

55

Chapter 6: Vertex Array Range

This chapter discusses the mother of all game optimizations on the Mac. If you properly
implement the technique that is about to be discussed then you can get anywhere from a 50%
to 300% improvement in your game’s frame rate!

If you’re experienced with OpenGL then you should already be familiar with Vertex Arrays
since those are the preferred way to submit geometry meshes for rendering. A small example
using Vertex Arrays was shown in Listing 4-7. The new optimization is called “Vertex Array
Range”, otherwise known as VAR, and the idea behind this optimization is very simple. By
marking a Vertex Array’s data as “accelerated,” any rendering done with that data gets a
massive speed boost. It’s that simple.

Marking a range of memory as VAR data, speeds up the time it takes OpenGL to transfer that
data to the video card for processing. You may not realize it, but a huge amount of time is
spent during the rendering process to dump the thousands of points, normals, texture UV’s,
and vertex colors to the video card. You probably thought that it was the pixel drawing that
took so long, but in reality it’s the uploading of the raw data that’s the speed killer.

The concept behind this optimization is easy, but doing a good implementation of it does take
some effort, so we’re going to cover the whole enchilada step by step. The sample project
named “Vertex Array Range.xcode” contains all of the code in this chapter, and demonstrates
how to use it to draw an object on the screen. All of the new code dealing with VAR is in the
source file VertexArrayRange.c.

Initializing Vertex Array Range
The first thing we need to do to use the VAR feature is to initialize it:

Listing 6-1: Initializing Vertex Array Range Ranges
void OGL_InitVertexArrayRanges(void)
{
 short i;
 static char *s;

 /* DETERMINE IF HARDWARE SUPPORTS VAR */

 s = (char *)glGetString(GL_EXTENSIONS); // get extensions list

Chapter 6: Vertex Array Range 56

 if (strstr(s, "GL_APPLE_vertex_array_range") == nil)
 DoFatalAlert("\pVertex Array Range not supported.");

 /* GENERATE VERTEX ARRAY OBJECTS */
 //
 // Each object represents a chunk of RAM that
 // we’re marking for VAR use.
 //

 glGenVertexArraysAPPLE(NUM_VERTEX_ARRAY_RANGES,

&gVertexArrayRangeObjects[0]);

 /* INIT OUR DATA */
 //
 // None of the VAR objects has been assigned to any data yet,
 // so here we just initialize our info. We'll assign the VAR

// objects to data later.
 //

 for (i = 0; i < NUM_VERTEX_ARRAY_RANGES; i++)
 {
 gVertexArrayRangeData[i].rangeSize = 0;
 gVertexArrayRangeData[i].dataBlockPtr = nil;
 gVertexArrayRangeData[i].forceUpdate = true;
 gVertexArrayRangeData[i].activated = false;
 }
}

Not all hardware actually supports the VAR feature, so the first thing the initialization
function does is check if VAR is supported. To determine this we simply get the current
OpenGL Extensions list, and then look for the string “GL_APPLE_vertex_array_range”. 3D
hardware at least as new as the Nvidia GeForce 2MX or ATI Radeon support VAR, but older
cards like the ATI Rage 128 do not.

A list of VAR objects is obtained by calling glGenVertexArraysAPPLE(). These object
references will be used later when we need to mark blocks of memory as VAR accelerated,
but for now all we are doing is initializing everything.

We’re going to need a function that we can use to assign blocks of memory to our VAR
engine:

Listing 6-2: Assigning a Vertex Array Range
void OGL_AssignVertexArrayRangeMemory(long size, void *data,
 Byte whichVAR)
{

57

 if (whichVAR >= NUM_VERTEX_ARRAY_RANGES)
 DoFatalAlert("\pVAR is out of range!");

 gVertexArrayRangeData[whichVAR].rangeSize = size;
 gVertexArrayRangeData[whichVAR].dataBlockPtr = data;
 gVertexArrayRangeData[whichVAR].forceUpdate = true;
}

OGL_AssignVertexArrayRangeMemory() is called only to store some information about the
block of memory that we want accelerated, but the memory still is not marked as VAR. To
actually mark our blocks of memory as VAR, we have an update function that we’ll call at
the beginning of the game’s render loop, before anything gets drawn:

Listing 6-3: Updating the VAR Data
void OGL_UpdateVertexArrayRanges(void)
{
 long size;
 Byte i;

 for (i = 0; i < NUM_VERTEX_ARRAY_RANGES; i++)
 {
 /* SEE IF THIS VAR IS USED */

 size = gVertexArrayRangeData[i].rangeSize;
 if (size == 0)
 continue;

 /* SEE IF VAR NEEDS UPDATING */

 if (!gVertexArrayRangeData[i].forceUpdate[i])
 continue;

 /* BIND THIS VAR OBJECT SO WE CAN DO STUFF TO IT */

 glBindVertexArrayAPPLE(gVertexArrayRangeObjects[i]);

 /* SEE IF THIS IS THE FIRST TIME IN */

 if (!gVertexArrayRangeData[i].activated)
 {
 glVertexArrayRangeAPPLE(size,
 gVertexArrayRangeData[i].dataBlockPtr);

 glVertexArrayParameteriAPPLE(
 GL_VERTEX_ARRAY_STORAGE_HINT_APPLE,
 GL_STORAGE_SHARED_APPLE);

Chapter 6: Vertex Array Range 58

 // you MUST call this flush to get the data primed

 glFlushVertexArrayRangeAPPLE(size,
 gVertexArrayRangeData[i].dataBlockPtr);

 glEnableClientState(GL_VERTEX_ARRAY_RANGE_APPLE);

 gVertexArrayRangeData[i].activated = true;
 }

 /* ALREADY ACTIVE, SO JUST UPDATING */

 else
 {
 glFlushVertexArrayRangeAPPLE(size,
 gVertexArrayRangeData[i].dataBlockPtr);
 }

 gVertexArrayRangeData[i].forceUpdate = false;
 }
}

There are lots of important things to discuss about this update function. First it determines if
a VAR needs to be updated by checking a flag that we set, and if it does then it calls
glBindVertexArrayAPPLE() to make that VAR object active:

 glBindVertexArrayAPPLE(gVertexArrayRangeObjects[i]);

If this is the first time that this VAR is being updated then we have some special initialization
to do to it. It’s here that we finally get around to telling OpenGL about the block of memory
that we wanted accelerated:

glVertexArrayRangeAPPLE(size, gVertexArrayRangeData[i].dataBlockPtr);

This tells OpenGL that the currently active VAR object uses this block of memory. The
block of memory is defined by the pointer to the start of the memory block and the size to
indicate the number of bytes in the block.

The next step is to tell OpenGL what kind of VAR this is: shared or cached. In our case, we
set it to shared:

 glVertexArrayParameteriAPPLE(GL_VERTEX_ARRAY_STORAGE_HINT_APPLE,
 GL_STORAGE_SHARED_APPLE);

59

I’ll discuss the differences between shared and cached VAR data in a moment, but first let’s
see how we complete our update function. After marking our VAR as shared we call
glFlushVertexArrayRangeAPPLE() to get OpenGL to do it’s magic:

 glFlushVertexArrayRangeAPPLE(size,
 gVertexArrayRangeData[i].dataBlockPtr);

This flush call is very important! It basically primes the data that’s in our VAR’s memory
block, and if you don’t do this flush you’ll likely get a bunch of garbage rendered instead of
your model.

After doing this we activate this VAR object with a call to glEnableClientState(). That’s
it! We’re ready to start submitting geometry whose data resides in our VAR memory, and
it’ll get drawn super-fast.

Once we’ve done all that setup the first time though, we only need to make one call to update
the VAR the next time around:

 glFlushVertexArrayRangeAPPLE(size,
 gVertexArrayRangeData[i].dataBlockPtr);

Here, the flush function simply let’s OpenGL know that the data in our VAR memory has
changed since the last time we rendered with it, so OpenGL can do whatever internal updat-
ing it needs to do. Once again, failure to do this flush will result in garbage being drawn,
therefore, it is important to always do this update whenever data in your VAR memory block
has changed, even if it’s only one byte that’s different.

Cached Mode vs. Shared Mode
As was stated above, there are two modes you can set a VAR object to: cached or shared.
Here’s what each one does:

Cached VAR Data
Memory that you mark as cached actually gets copied to VRAM, and is kept there until you
dispose of it. Even though the video card processes this data the fastest, it’s really not worth
the problems it creates. For starters, it uses up precious VRAM that would be better used for
storing texture data, not vertex data. Secondly, uploading the data to VRAM is slow, so if
you’re constantly allocating VAR memory in your game and you suddenly need to upload a
large chunk of RAM then you’ll probably notice a hiccup in the game as OpenGL uploads all
that data to VRAM. Similarly, if you need to change any of the data in that memory block

Chapter 6: Vertex Array Range 60

then OpenGL has to re-upload it each time you make a modification, hence, more hiccups in
your game.

Shared VAR Data
Memory marked as shared does not get copied to VRAM. Instead it gets tagged as AGP
memory. AGP memory is memory with a fast path to the video card. It’s like having VRAM
in regular RAM, but just a little slower. Shared VAR data is not as fast as cached VAR data,
but the speed difference is completely undetectable in a real-world application. I tried both
methods when developing Nanosaur 2, and there was absolutely no difference in frame rate
between the two. Using shared VAR data in Nanosaur 2 sped the game up by about 70%!
Since shared VAR data is not copied to VRAM it is also much easier to make modifications
to the information stored there.

So, shared mode is the way to go, but if you do want to experiment with the cached mode you
would need to pass GL_STORAGE_CACHED_APPLE to glVertexArrayParameteriAPPLE()
instead of GL_STORAGE_SHARED_APPLE. Then, to do an update (which is very expensive in
cached mode), you would do this:

 glVertexArrayRangeAPPLE(0, nil);
 glVertexArrayRangeAPPLE(size,
 gVertexArrayRangeData[i].dataBlockPtr);
 glFlushVertexArrayRangeAPPLE(size,
 gVertexArrayRangeData[i].dataBlockPtr);

If you read Apple’s documentation about VAR’s you would be lead to believe that updating a
cached VAR is exactly the same as updating a shared VAR – just use the
glFlushVertexArrayRangAPPLE() call. However, this is not true. There was a bug in Mac
OS 10.2.x which caused that flush call to basically have no effect on cached VAR memory,
so, to be 100% certain that your update works we have to do a hard reset of the VAR’s
memory allocation. Passing 0 into glVertexArrayRangeAPPLE() effectively kills that VAR,
and then we reset it with another call to glVertexArrayRangeAPPLE(). This is yet another
reason to avoid using cached VAR’s.

Drawing with VAR
Now it’s time to put VAR to some use by accelerating the cube drawing function first used in
the Math Optimizations sample project. In that sample project we defined our cube’s
geometry as an array of points, an array of vertex colors, and an array of triangles. When
using VAR it is best to group as much data together as possible so that it can be assigned
under a single block of VAR memory. To guarantee that all of our geometry data is blocked
together in RAM, we’re going to put it all into a single structure:

61

typedef struct
{
 OGLPoint3D points[8];
 OGLColorRGBA colors[8];
 GLint quads[6];
}CubeDataType;

To mark the cube’s Vertex Array data for VAR use we’ll need to assign that block of RAM
to our VAR engine:

 OGL_AssignVertexArrayRangeMemory(sizeof(CubeDataType),
 &gCubeMesh,
 0);

The final step in this whole process is to bind the VAR object, and submit the geometry. So,
before making any of the usual Vertex Array calls, we need to do this:

 glBindVertexArrayAPPLE(gVertexArrayRangeObjects[0]);

So, let’s see how we would go about drawing this cube:

Listing 6-4: Drawing the Cube with VAR
static void DrawCube(void)
{
 /* MAKE THE CUBE'S VAR MEMORY ACTIVE */
 // bind to VAR #0

 glBindVertexArrayAPPLE(gVertexArrayRangeObjects[0]);

 /* INIT THE VERTEX ARRAYS */

 glEnableClientState(GL_VERTEX_ARRAY); // point to points
 glVertexPointer(3, GL_FLOAT, 0, gCubeMesh.points);

 glColorPointer(4, GL_FLOAT, 0, gCubeMesh.colors);
 glEnableClientState(GL_COLOR_ARRAY); // point to vert colors

 glDisableClientState(GL_TEXTURE_COORD_ARRAY); // no uv's
 glDisableClientState (GL_NORMAL_ARRAY); // no normals

 /* SUBMIT THE VERTEX ARRAYS */

 glDrawElements(GL_QUADS, 4*6, GL_UNSIGNED_INT, gCubeMesh.quads);

Chapter 6: Vertex Array Range 62

}

You won’t be able to notice any performance change with this simple VAR sample applica-
tion because we’re not drawing enough geometry to be able to tell, but the benefits become
amazingly obvious once your game starts drawing lots of geometry data in the thousands or
tens of thousands of vertices per frame range. Most high-end games on the Mac wouldn’t be
able to function without using VAR to get massive performance boosts.

Issues with VAR
Ok, now you’ve heard the good news, so it’s time for the bad news. The bad news is that you
cannot touch the memory marked as VAR while the video card is still drawing geometry
from it. In other words, if we submit our cube geometry and then decide to tweak some
vertex colors for the next frame, we cannot do that until the video card is done drawing the
cube. If you touch VAR memory while the video card is still using it, all hell will break
loose. Even changing just one byte of color data can cause the whole model to render
incorrectly. You might see vertices get moved around randomly, faces drawn with incorrect
vertices, etc. This usually manifests itself as random flashes in the game when different
pieces of geometry data get momentarily corrupted from frame to frame.

Luckily, not all is lost. We can still modify our mesh data via three different methods:
glFinish(), Fencing, and double-buffering.

glFinish
This is not a viable solution to the problem, but it is useful for debugging. If you need to
modify some geometry data, you can always call glFinish() since that will wait until the
video card is done drawing the scene. At that point you know it’s safe to modify the data in
the VAR memory. Never ever use this option for anything but debugging since it totally kills
any performance gained by using VAR in the first place!

Fencing
OpenGL has a feature called “fencing” which is a way of inserting a marker in the render
queue that let’s you know when something is done drawing. This is like a localized version
of glFinish() except that it lets you wait around only until a specific piece of geometry is
done instead of the entire scene. In a typical application, fences won’t totally kill the per-
formance gained from using VAR’s, but they do come close since they still result in a stall.
However, there are times when fences are the only solution to the problem.

63

An OpenGL fences is another type of object just like texture objects or even VAR objects, so
they have a glGen() call to create them:

 glGenFencesAPPLE(1, &gMyFenceObject);

To use this fence object we need to insert it into the rendering queue immediately after we’ve
submitted the geometry that we’re interested in:

 glSetFenceAPPLE(gMyFenceObject);

If we want to modify the geometry data that we just submitted then we make the following
call to wait for it to finish rendering:

 glFinishFenceAPPLE(gMyFenceObject);

As you can see, using fences is very easy and it’s better than doing a glFinish(), but we still
have one better option…

Double-Buffering
To get the maximum performance from your game engine using VAR you’re going to have to
double-buffer any geometry data that you make modifications to on a regular basis. Double-
buffering your geometry means that you’ve got to have two completely separate copies of it,
and each copy needs to go into a different VAR object. That way, you can submit copy “A”
for rendering while you edit copy “B” for the next frame. Then, on the next frame you
submit copy B while you edit copy A.

Obviously, this uses a lot of RAM. The reason that Nanosaur 2 required so much memory to
run compared with our older games was simply because of the huge amount of double-
buffered geometry data that that game needed. Double-buffering probably increased that
game’s memory footprint by over 100MB, but the speed increase we got from it was well
worth it.

Most of the geometry in your scene is going to be static, meaning that you won’t ever be
physically modifying it. But there are lots of cases where you may be modifying data such as
character animation and particle effects. As you design your game engine you will need to
come up with a system for organizing your vertex arrays. My games use a very complex
system that allows me to put static geometry into simple VAR’s while putting dynamic
geometry into double-buffered VAR’s. The VAR system presented in the sample project

Chapter 6: Vertex Array Range 64

here is a good starting point. You can build on top of that to make a more powerful system to
meet your specific needs.

65

Chapter 7: Calculating the Frame Rate

A fundamental part of every game is calculating the frame rate. This value is needed not only
for the pride factor of being able to say “my game runs at a zillion frames per second”, but it
is an essential value that is needed to regulate the physics in the game. Knowing the frame
rate lets us adjust our motion calculations so that everything appears to be moving at the same
speed even as the frame rate fluctuates.

Calculating the frame rate is as simple as calling the following function once before every
frame of animation in your game loop:

Listing 7-1: Determining the Frames Per Second
void CalcFramesPerSecond(void)
{
 AbsoluteTime currTime,deltaTime;
 static AbsoluteTime time = {0,0};
 Nanoseconds nano;

loop:
 /* GET CURRENT TIMER */

 currTime = UpTime();

 /* GET DELTA FROM PREVIOUS TIME */

 deltaTime = SubAbsoluteFromAbsolute(currTime, time);
 nano = AbsoluteToNanoseconds(deltaTime);
 time = currTime; // reset for next time interval

 /* CONVERT NANOSECONDS TO SECONDS */

 gFramesPerSecond = (float)kSecondScale / (float)nano.lo;

 /* MAKE SURE WE DON’T GO UNDER THE MINIMUM */

 if (gFramesPerSecond < MIN_FPS)
 gFramesPerSecond = MIN_FPS;

 /* MAKE SURE WE DON’T GO OVER THE MAXIMUM */

 if (gFramesPerSecond > MAX_FPS)

Chapter 7: Calculating the Frame Rate 66

 goto loop;

 /* CALC 1.0 / FPS */

 gOneOverFramesPerSecond = 1.0f/gFramesPerSecond;
}

The function UpTime() returns the amount of time since your Mac has been booted. To
determine how much time has passed since the last time CalcFramesPerSecond() was called
we simply subtract the previous timer value from the current timer value. A quick call to
AbsoluteToNanoseconds() will convert the delta value into nanoseconds so that we can
easily work with it. Dividing the nanoseconds by kSecondScale gives us our frames-per-
second value.

We also calculate this:

 gOneOverFramesPerSecond = 1.0 / gFramesPerSecond

This gOneOverFramesPerSecond is what you’ll be using almost all the time in any game
physics. The reason we calculate this value is because multiplying by a pre-calculated value
1.0/n is always faster than dividing by n. For example, the value of t is the same in each
line below, but the second line is much more efficient:

 t = t / n; // this has a slow divide
 t = t * oneOverN; // this has a fast multiply

You’ll notice another very important thing that we do in this function:

 if (gFramesPerSecond < DEFAULT_FPS)
 gFramesPerSecond = DEFAULT_FPS;

This limits the minimum frame rate to some default value. The reason for doing this is that in
real-world games things can break if the frame rate drops too low. For example, in Enigmo
we had to limit the minimum frame rate to about 13fps because at frame rates lower than that
the water droplets would move so far from frame to frame that the collision detection and
physics response system would start to break down. In other games such as Nanosaur 2, if
the frame rate drops too low then objects can move through other solid objects for the same
reasons. This is a common problem in almost all games, so the easy solution is to determine
what the minimum frame rate is before things start to break and then make sure you never
drop below that. In reality the game will still be running at a lower frame rate, but as far as
your physics are concerned you’re running at that minimum DEFAULT_FPS value. Things on
the screen will begin to look like they are moving in slow motion, but at least nothing breaks.

67

Similarly, we also should check for frame rates that are too high. Now you might be wonder-
ing “what’s wrong with high frame rates? Isn’t that what we want?” Well, yes and no. The
fact of the matter is that as the frame rate increases the deltas of the game physics values will
start to become very small. They can get so small that they cannot accurately be represented
in a 32-bit float value. Values approaching 0.00001 will have worse and worse accuracy, and
will eventually completely break down and be considered to be 0.0 by the FPU. So, you
either have to use floating point double’s instead of single precision float’s, or you just
have to be careful to be sure that no critical motion values get too small.

My favorite example of floating point breakdown is in the game Carmageddon. This game
was written in the days of fairly slow hardware - typically in the 180mhz range. The pro-
grammers never had anything super-fast to test the game on back when they wrote it, so they
had no way of knowing what would happen when faster machines did come out. Well, I
found out. When I bought my G4/400mhz I noticed that Carmageddon would exhibit some
very strange behavior in the physics: the motion became very erratic and other related visual
errors became noticeable. Then, when I bought a G4/1000mhz the super-high frame rate in
the game was causing the physics to completely malfunction. Apparently the game had lost
all floating-point precision, and it rendered the game completely unplayable.

Since there really isn’t any point in having a game run faster than the refresh rate of the
display it’s running on, I like to limit my games in the range of 85 to 120 fps. To do this
limiting we essentially have to slow down our game by just sitting in a loop until it’s time to
go:

 if (gFramesPerSecond > MAX_FPS)
 goto loop;

The sample project “Frames Per Second.xcode” uses our new frames per second calculation
to display the frame rate on the screen, and also to rotate the colored cube at an even speed.
In previous projects, this cube would spin at different speeds depending on the speed of your
computer because we were simply rotating the cube by 0.1 degrees each frame. By using the
gOneOverFramesPerSecond value we can adjust that rotation speed to be the same no matter
what the frame rate is.

Chapter 7: Calculating the Frame Rate 68

Listing 7-2: Spinning the Cube Based on the FPS
static void MoveCube(void)
{

// spin 300 degrees per second on x-axis

 gCubeRotX += 300.0f * gOneOverFramesPerSecond;

// spin 100 degrees per second on y-axis

gCubeRotY += 100.0f * gOneOverFramesPerSecond;
}

As you see, we can easily tell the cube to rotate on the x-axis at a rate of 300 degrees per
second, and on the y-axis at 100 degrees per second. Multiply any constant value by
gOneOverFramesPerSecond to get its per-frame value.

69

Chapter 8: Gamma Fades

The easiest way to transition between scenes in a game is to fade out – fade in. This is easily
accomplished with hardware gamma fades. The “Gamma” value of a display is its luminosity
curve of the red, green, and blue channels from 0 to 255. Normally, a display has a linear
curve like this:

Figure 8-1: The standard gamma curve

To fade the screen 50%, we would change the display’s gamma curve like so:

Figure 8-2: 50% faded gamma curve

Implementing gamma fades in your game code is very easy, and there are two ways to do it:
You can either use the Core Graphics function CGSetDisplayTransferByFormula() or
CGSetDisplayTransferByTable().

Chapter 8: Gamma Fades 70

CGSetDisplayTransferByFormula
This is the easiest way to change the gamma of your display, and the first step is to grab the
display’s current gamma values so we know from what values to start fading:

Listing 8-1: Get the Initial Gamma Values
void InitGammaValues(void)
{
 CGGetDisplayTransferByFormula(gCGDisplayID,
 &gGammaRedMin,

&gGammaRedMax,
&gGammaRedGamma,
&gGammaGreenMin,
&gGammaGreenMax,
&gGammaGreenGamma,

 &gGammaBlueMin,
&gGammaBlueMax,
&gGammaBlueGamma);

 gGammaBrightness = 1.0;
}

All this initialization function does is read the current gamma settings with a single call to
CGGetDisplayTransferByFormula() which returns the min, max, and gamma value of the
red, green, and blue channels. The global variable gGammaBrightness holds the current fade
value for our game, so we initialize it to 1.0. This value will range from 0.0 to 1.0 depending
on how much we want our gamma faded, as you’ll see below.

To fade the screen to black, all we have to do is lower the Max values of the RGB channels,
and this is done by calling CGSetDisplayTransferByFormula(). For example, to set the
gamma to 50% brightness as shown in Figure 8-2, we simply do a call like this:

CGSetDisplayTransferByFormula(gCGDisplayID,
 &gGammaRedMin,

&gGammaRedMax * 0.5f,
&gGammaRedGamma,

 &gGammaGreenMin,
&gGammaGreenMax * 0.5f,
&gGammaGreenGamma,

 &gGammaBlueMin,
&gGammaBlueMax * 0.5,
&gGammaBlueGamma);

Here’s a function that does a fade-out over time using our FPS calculation that we learned in
the previous chapter:

71

Listing 8-2: Doing a Gamma Fade
void GammaFadeOut(float fadeDuration)
{
 while (gGammaBrightness > 0.0f)
 {
 /* SET NEW GAMMA */

 SetGammaFade(gGammaBrightness);

 /* DECAY BRIGHTNESS */

 CalcFramesPerSecond();
 gGammaBrightness -= gOneOverFramesPerSecond / fadeDuration;

 }

 /* MAKE SURE WE'RE TOTALLY FADED */

 SetGammaFade (0);
 gGammaBrightness = 0;
}

The GammaFadeOut() function is a loop that decays our global gGammaBrightness value over
a specified duration, making use of the gOneOverFramesPerSecond. At the end of the
function we make sure that the gamma is totally black by forcing a brightness of 0.0. The
function that physically sets the gamma brightness is SetGammaFade():

Listing 8-3: Setting the Gamma Fade Brightness
void SetGammaFade (float brightness)
{
 float redMax = gGammaRedMax * brightness;
 float greenMax = gGammaGreenMax * brightness;
 float blueMax = gGammaBlueMax * brightness;

 CGSetDisplayTransferByFormula(gCGDisplayID,
 gGammaRedMin, redMax, gGammaRedGamma,
 gGammaGreenMin, greenMax, gGammaGreenGamma,
 gGammaBlueMin, blueMax, gGammaBlueGamma);
}

Chapter 8: Gamma Fades 72

This single function is what all of our other gamma utility functions will ultimately call to
make any gamma changes. If we want to do a fade-in while our game is playing, then we’ll
need a new fade-in function that we can call on each pass through our main loop:

Listing 8-4: Fading In an Animating Scene
void GammaFadeInOneFrame(float fadeDuration)
{
 if (gGammaBrightness < 1.0f)
 {
 /* DECAY BRIGHTNESS */

 gGammaBrightness += gOneOverFramesPerSecond / fadeDuration;
 if (gGammaBrightness > 1.0f) // pin to 1.0
 gGammaBrightness = 1.0f;

 /* SET NEW GAMMA */

 SetGammaFade(gGammaBrightness);
 }
}

By calling GammaFadeInOneFrame() from our game’s animation loop we will get a nice
scene fade-in transition when our game starts up. However, since our application doesn’t
start dimmed out, we’ve got to turn the gamma brightness all the way down before entering
the main animation loop. To instantly darken the gamma we just do this:

 gGammaBrightness = 0;
 SetGammaFade(gGammaBrightness);

The sample project “Gamma Fades.xcode” contains a full set of these gamma-fading func-
tions in the source file Screen.c. When you run this sample application you’ll see the
spinning cube fade in as it’s animating, and when you click the mouse button, you’ll see a
fade out done with our GammaFadeOut() function.

As you may have realized by now, you can write specialized fade functions to do color fades
and not just these black fades. The CGSetDisplayTransferByFormula() function takes
separate red, green, and blue values, so if you wanted to do a fade to red you would simply
decay the green and blue channels leaving only red.

73

CGSetDisplayTransferByTable
The other way to modify the display’s gamma is with CGSetDisplayTransferByTable().
This function lets you specify the entire 256-entry gamma table for the RGB channels. What
this means is that you can specify an exact gamma curve if you wanted to do some really
funky gamma effects. The CGSetDisplayTransferByFormula() function that we used
earlier essentially does linear gamma curves, so you don’t really have much control over it,
but the Table method gives you total control. The fact of the matter is, however, that you’re
unlikely to ever need or have any desire to use your own custom gamma tables unless you’ve
got some bizarre visual effect in mind.

One last thing to note about gamma fades: if your display is faded out then you won’t be able
to see anything in your debugger. When I know I’m going into a debug session, I always
disable my gamma fading functions. For that matter, when I’m debugging I usually run the
game in windowed mode, where I don’t do any gamma fades at all because a gamma fade
affects the whole screen, not just the window that we’re rendering into.

75

Chapter 9: Carbon Events

Carbon Events are what keep everything on the Mac functioning. When you select a window
in the Finder, that generates several types of events, and when you click on a checkbox in a
dialog, that too generates a series of events. There are handler functions for just about every
event that can occur, but luckily, the OS handles most of the basic ones automatically. When
you click on a menu bar, the OS automatically handles all of the events involved with
navigating that menu and making a selection, or when you drag a window the OS deals with
all the updating for that as well.

We can install our own Carbon Event Handlers to manage many things in our game, and in
this chapter we’re going to learn how to use them to process our game’s main loop, and also
how to process its main menu. In Chapter 11 we’ll see how to use events generated by the
keyboard and mouse to do simple forms of input.

Event Loop Timers
Up until now our game engine’s main loop has just been a simple while() loop, and in the
days of Mac OS 9 and before, this was a perfectly acceptable way of doing things. As a
matter of fact, this was the preferred way to do an event loop because games needed every
cycle of CPU power that they could get, and any background tasks running on the Mac would
just slow things down. But on OS X background tasks are going to occur whether we like it
or not, so it’s best to do things correctly using Carbon Events. Failure to do so can actually
cause some things to behave incorrectly in your application, and would cause the OS to think
that your application has locked up. Using Carbon Events also allow us to have a menu bar
in our game if needed, and it lets us easily read the keyboard and extended mouse information
as we’ll see in Chapter 11.

Installing a Timer Callback
Timers are a type of Carbon Event that trigger a callback function at regular intervals, and
we’ll use one of these Timer events to call our game’s main loop code as quickly as it can.
It’s like setting the heartbeat of your application.

Chapter 9: Carbon Events 76

Listing 9-1: Carbon Event Loop Timers
EventLoopTimerRef gMainLoopTimer = nil;

void SetMyMainLoopEventTimer(EventLoopTimerProcPtr myMainLoopFunc)
{
 EventLoopTimerUPP eventLoopTimerUPP;
 EventLoopRef mainLoop;

 /* MAKE SURE WE DON’T ALREADY HAVE AN EVENT TIMER GOING */

 if (gMainLoopTimer != nil)
 DoFatalAlert("\p timer already set!");

 /* GET A REFERENCE TO OUR APP’S MAIN EVENT LOOP */

 mainLoop = GetMainEventLoop();

 /* CREATE A NEW EVENT LOOP TIMER */
 //
 // This inserts our main loop callback into a
 // new event timer
 //

 eventLoopTimerUPP = NewEventLoopTimerUPP(myMainLoopFunc);

 InstallEventLoopTimer(mainLoop,
 kEventDurationNoWait, // delay before first shot
 kEventDurationMillisecond, // delay until next shot
 eventLoopTimerUPP, // which event loop timer to install
 nil, // no user data
 &gMainLoopTimer); // returnedtimer reference

 /* CLEANUP */

 DisposeEventLoopTimerUPP(eventLoopTimerUPP);
}

Every application has a Carbon Event “main loop” by default. Don’t get confused between
the two different loops that we’re both calling “main loop.” There’s the application’s Carbon
Event Loop which is automatically processed by the OS, and then there’s our game’s own
main loop which is our code that moves objects and draws them. To get a reference to the
application’s Carbon Event main loop, we do this:

 mainLoop = GetMainEventLoop();

Next, we create a new Timer event that will trigger a callback to our game’s main loop code:

77

 eventLoopTimerUPP = NewEventLoopTimerUPP(myMainLoopFunc);

To install this Timer into the Carbon Event main loop we call InstallEventLoopTimer()
which takes several input parameters that define how the Timer will function:

kEventDurationNoWait
This tells the Event Manager that we want our Timer event to call our callback function
immediately.

kEventDurationMillisecond
This tells the Event Manager to trigger the Timer event once every millisecond if possible. If
the CPU is still in our main loop callback after one millisecond has expired, then there’s no
way that another event will get triggered, but as soon as we exit our main loop code and
return control to the Event Manager, it will issue another callback to us.

Processing The Main Loop
We need to modify our old main loop code from the previous sample projects to work with
our Timer Event callbacks. A typical main loop callback function looks like this:

Listing 9-2: Our Timer Event Callback Function
pascal void MyMainLoop (EventLoopTimerRef theTimer, void* userData)
{
 /* EXIT EVENT LOOP IF BUTTON PRESSED */

 if (Button())
 QuitApplicationEventLoop();

 /* DO 1 PASS OF THE LOOP */

 CalcFramesPerSecond(); // calc FPS
 GammaFadeInOneFrame(3.0); // do 3-second fade-in
 MoveCube(); // move cube
 OGL_DrawScene(); // draw scene
}

Once we’ve set all of this up we need to give control of our application to the OS. The
Carbon Event Manager will have complete control, and it will issue callbacks to our main
loop as our Timer Event fires away. To get the ball rolling we do this:

 SetMyMainLoopEventTimer(MyMainLoop); // install the main loop timer

Chapter 9: Carbon Events 78

 RunApplicationEventLoop(); // process all the timer events

First we create the main loop timer callback by calling our SetMyMainLoopEventTimer()
function. Then we enter the application’s event loop via RunApplicationEventLoop(). As
soon as RunApplicationEventLoop() is called our Timer event will start calling
MyMainLoop(). When MyMainLoop() returns after processing one frame of animation,
control returns to the OS until the Timer fires again.

Once RunApplicationEventLoop() is called it does not return until our callback function
calls QuitApplicationEventLoop(), but our Timer event is still installed, so we need to
remove it:

Listing 9-3: Removing the Timer Event
void RemoveMyMainLoopEventTimer(void)
{
 if (gMainLoopTimer != nil)
 {
 RemoveEventLoopTimer(gMainLoopTimer);
 gMainLoopTimer = nil;
 }
}

The sample project “Carbon Events.xcode” shows the spinning cube that we’re familiar with,
but this time the animation is running entirely off of one of these Carbon event timers.

Menu Bars
If your game were running full-screen then there obviously wouldn’t be any use in having a
menu bar since it wouldn’t be visible. However, if your game supports a windowed mode
then it’s a good idea to have a menu bar, and luckily Carbon Events and Interface Builder
make supporting menus very easy.

The first step in supporting menus is to build the menu bar in Interface Builder. The
Game.nib file in the Carbon Events.xcode project has a new menu bar resource:

79

Figure 9-1: Our menu resource in Interface Builder

By default, Mac OS X treats the first menu in the list as the “application menu” which means
that certain things will happen to it when you see it in the program. In Figure 9-1 you can see
that we named the first menu “My App Menu”, and it contains just two menu items: “About
My App” and “Preferences…”, but that is not exactly what will appear in the game:

Figure 9-2: The Application Menu is automatically given our application’s name

Mac OS X automatically renames the application menu to our application’s actual file name
regardless of what you’ve named it in Interface Builder. So, we see “Carbon Events” instead
of “My App Menu”. Additionally, the OS attaches several default menu items to this
application menu. The first two menu items are the ones from our resource, but the addi-
tional ones are all default menu items added by Mac OS X, including the Quit menu item.

Chapter 9: Carbon Events 80

As you know from Chapter 2, resources built with Interface Builder all operate off of four-
character command values, so we assign commands to each menu item that we want to
handle. In Figure 9-1 you can see that we have assigned the command ‘pref’ to the menu
item for Preferences. The command ‘quit’ is assigned by the OS to the Quit menu item that it
created. These commands are handled by a new event handler that we install into our
application, but first we need to load our menu bar resource and make it active. This is all
done with one call:

 SetMenuBarFromNib(gNibs, CFSTR("MainMenu"));

The name of the menu resource that we want to load is passed in, and OS X takes care of the
rest. The menu bar will appear at the top of the screen, and the user will be able to navigate
though it and make selections. This magical, automatic handling of menu bars is one of the
things that the Event Manager does for us when we’ve called RunApplicationEventLoop()
to process our game’s main loop. In addition to handling those Timer events that we in-
stalled, it also handles menu clicks and things of that nature.

Even though we can navigate through our menu at this point, selecting a menu item has no
effect because we haven’t written any code to handle menu selection events. To do that we
need to install an event handler that will receive and process the menu item commands:

Listing 9-4: Installing a Menu Bar and Event Handler
void InitMyCommandEventHandler(void)
{
 OSStatus iErr;

 // types of events to handle

 EventTypeSpec events[1] = {kEventClassCommand, kEventCommandProcess};

 /***/
 /* LOAD AND SET MENU BAR FROM OUR NIB FILE */
 /***/

 iErr = SetMenuBarFromNib(gNibs, CFSTR("MainMenu"));
 if (iErr != noErr)
 DoFatalAlert("\pSetMenuBarFromNib failed!");

 /************************/
 /* CREATE EVENT HANDLER */

81

 /************************/

 gMyEventHandlerUPP = NewEventHandlerUPP(MyEventHandler);

 InstallEventHandler(GetApplicationEventTarget(),
 gMyEventHandlerUPP,
 1,
 events,
 nil,
 &gMyEventHandlerRef);
}

The OS will handle most of the events that occur in the system, so all we want to do is handle
the “command” events – those events that have four-character command signatures. There-
fore, we define only one type of event in our EventTypeSpec array:

 EventTypeSpec events[1] = {kEventClassCommand, kEventCommandProcess};

To install a callback function to handle these command events, the function
InstallEventHandler() is called with all of the required input parameters. Once we do
this, our callback function will get called anytime a menu command needs to be handled:

Listing 9-5: The Menu Command Event Handler
pascal OSStatus MyEventHandler(EventHandlerCallRef eventhandler,
 EventRef event, void *userdata)
{
 OSStatus result;
 HICommand command;

 /* EXTRACT COMMAND INFO FROM EVENT */

 GetEventParameter(event, kEventParamDirectObject, typeHICommand,
 nil, sizeof(HICommand), nil, &command);

 /* HANDLE THE COMMAND */

 switch (command.commandID)
 {
 case 'quit': // Quit menu item
 gQuitApplication = true;
 result = noErr;
 break;

 case 'pref': // Preferences... menu item
 break;

Chapter 9: Carbon Events 82

 case 'helo': // Say Hello menu item
 DoAlert("\pHello");
 break;

 default:
 result = eventNotHandledErr;
 }

 return(result);
}

One of the cool things about Carbon Events is evident when you select the Say Hello menu
item in the Special menu. This brings up a dialog that says “Hello,” and even as this dialog is
displayed and you manipulate it, the cube continues to spin in the background because our
Timer events keep firing.

Figure 9-3: Spinning cube in the background while an Alert dialog comes up

As cool as that is, you’d normally want your game to pause when any dialogs come up like
that, so in your games you might make some modifications. In MyEventHandler(), do this:

 case 'helo': // Say Hello menu item
 gPauseGame = true;
 DoAlert("\pHello");
 gPauseGame = false;
 break;

Then in MyMainLoop() add this to the top of the function:

83

 if (gPauseGame)
 return;

The main loop callback will still occur, but it will simply bail out without actually doing
anything, thus, giving the illusion that the game has paused.

Preventing Your Game From Going to Sleep
As far as the Mac is concerned, your game is just like any other event-driven application
running on it, so unless you tell it otherwise, Mac OS will put your machine to sleep if you
leave the game running with no input from the keyboard or mouse – as might happen in a
self-running demo mode.

On Mac OS 9 there was a system function named AutoSleepControl() that you could call
that would prevent the machine from going to sleep. Unfortunately, this call does absolutely
nothing on OS X, so if you were thinking about using it, think again. Instead, we have a
different way to prevent the Mac from going to sleep on OS X:

 UpdateSystemActivity(UsrActivity);

Calling UpdateSystemActivity() about once every 30 seconds should prevent the computer
from going to sleep by tricking it into thinking there was some user activity. I like to insert
this code into the OGL_DrawScene() function, but you can stick it anywhere inside the game
loop that you like. The chunk of code looks like this:

Listing 9-6: Preventing the Mac from Going to Sleep
 static float timer = 0;

 timer -= gOneOverFramesPerSecond;
 if (timer < 0.0f) // see if time to update system activity
 {
 UpdateSystemActivity(UsrActivity);
 timer = 30.0f; // reset timer to 30 seconds
 }

85

Chapter 10: Audio

Unfortunately, audio has always been one area that the Macintosh has been deficient. While
PC’s have had dedicated sound hardware capable of doing surround sound and all sorts of
awesome processing effects for over a decade, the Mac has had just a simple built-in DAC
which is entirely software driven. Over the years, attempts at doing complex sound effects in
software (like with the old Sound Sprocket libraries) resulted in massive performance loss,
and the audio quality was never what was achievable with the kind of hardware common in
the PC world.

Luckily, the future is starting to look a little brighter now that Apple has formally adopted
OpenAL as the high level sound API for OS X. This API is very efficient and very powerful,
so game programmers should now be able to start supporting cool audio effects in their
games. I’ll be discussing OpenAL in detail in the final section of this chapter, but first I’m
going to discuss some other ways of producing sound effects and music.

Quicktime for Music Playback
Quicktime is the easiest method of playing back a music file on OS X. The beauty of using
Quicktime is that it magically handles just about any standard audio file format around, from
MP3 to AIFF to WAV, and even the Dolby AAC format. Additionally, it lets you stream
music from a large file without having to load it into RAM (although I recommend pre-
loading it into RAM for performance). The only major downside to using Quicktime is that it
is lousy at looping a music file. Quicktime likes to pause for a fraction of a second when it
“rewinds” a song to loop it, so you cannot have music that seamlessly repeats if you’re using
Quicktime. I always use Quicktime to play the music in my games, so I’ve had to tell my
musicians to make sure that all the songs have some sort of completion to them that end in
silence. That way there will be no noticeable paused during the rewind. In my experience,
this rewind delay can be anywhere from 1/20th of a second to a full 1/4 second.

To get started with Quicktime, we need to make one initialization call in our application’s
startup code:

 EnterMovies();

Before we discuss how to actually load a sound file into Quicktime for playback, we first
need to have a short discussion on Files with Mac OS X.

Chapter 10: Audio 86

Accessing Data Files in the Resources Folder
All of your data files for your game should reside in your application package’s Resources
folder. This is where Xcode will copy your data/resource files that are included in the Xcode
project:

Figure 10-1: The Resources folder in the app bundle is where the Data resides

There are at least three ways to access files on the Mac:

• stdio file calls such as fopen, fread, etc.
• FSSpec’s which are the pre-OS X way of getting to files.
• FSRef’s which are the OS X preferred way to access files.

Nobody in his or her right mind would actually use stdio in a real Mac application, so we
won’t even discuss that here. That leaves us with the option of using FSSpec’s or FSRef’s.
Well, the fact of the matter is that we’ll want to use both. FSRef’s are the most modern way
of accessing files since they support Unicode and long filenames, but FSSpec’s are still used
by much of the OS including calls to Quicktime.

So, to find our application’s Resources folder, we call this function:

87

Listing 10-1:Finding the Application’s Resources Folder
FSRef gMyResourcesFolderFSRef;
FSSpec gMyResourcesFolderFSSpec;

void GetMyApplicationResourcesFolder(void)
{
 CFBundleRef appBundle;
 CFURLRef appResourcesURL;

 /* GET REFERENCES TO APPLICATION’S BUNDLE */

 appBundle = CFBundleGetMainBundle();

 /* GET THE URL OF THE RESOURCES FOLDER */

 appResourcesURL = CFBundleCopyResourcesDirectoryURL(appBundle);
 if (appResourcesURL == nil)
 DoFatalAlert(“\pYou don’t seem to have a Resources folder”);

 /* CONVERT THE URL TO AN FSREF */

 CFURLGetFSRef(appResourcesURL, &gMyResourcesFolderFSRef);

 /* ALSO GET THE FSSPEC WHILE WE’RE HERE */

 FSGetCatalogInfo(&gMyResourcesFolderFSRef,
 kFSCatInfoNone, // no catinfo needed
 nil,
 nil,
 &gMyResourcesFolderFSSpec, // fsspec to save into
 nil);

 /* A TRICK TO GET THE VOLUME & DIRECTORY ID’S INTO THE FSSPEC */

 iErr = FSMakeFSSpec(gMyResourcesFolderFSSpec.vRefNum,
 gMyResourcesFolderFSSpec.parID,
 "\p:Resources:Game.nib",
 &gMyResourcesFolderFSSpec);

 if (iErr != noErr)
 DoFatalAlert("\perror converting FSRef to FSSpec");

 gMyResourcesFolderFSSpec.name[0] = 0; // clear name string
}

The first part of Listing 10-1 is fairly straightforward. We get the application’s main bundle
with a call to CFBundleGetMainBundle(), and then we pass that bundle reference to

Chapter 10: Audio 88

CFBundleCopyResourcesDirectoryURL() which returns a URL to the Resources folder. But
we don't’ want to work with URL’s so the URL is converted into an FSRef by
CFURLGetFSRef().

This next part is a bit of a trick. When we call FSGetCatalogInfo() we get an FSSpec back,
but it’s not quite the FSSpec that we want. The vRefNum and parID (volume and directory
ID) fields are not set to the Resources folder. Instead, they are set to the Resources folder’s
parent folder, and the name field of the FSSpec is “Resources”. What we want is for the
vRefNum and parID fields to point directly to the Resources folder. Here’s how we can do
that:

 FSMakeFSSpec(gMyResourcesFolderFSSpec.vRefNum,
 gMyResourcesFolderFSSpec.parID,
 "\p:Resources:Game.nib",
 &gMyResourcesFolderFSSpec);

When we call FSMakeFSSpec() to create a new FSSpec, we pass the volume and directory
ID’s of that parent folder that we found, along with a pathname to a file that we know exists
in our Resources folder (in this case Game.nib). Upon return, gMyResourcesfolderFSSpec
contains the volume and folder ID’s of the Resources folder. Mission accomplished!

Starting a Sound File with Quicktime
Now that we know where our game’s Resources folder is, we’re ready to locate a sound file
and give it to Quicktime for playing. The sample project titled “Quicktime Music.xcode”
demonstrates how to play a streamed file called “Song.m4a”. The PlaySong() function
looks like this:

Listing 10-2:Playing a Song with Quicktime
CGrafPtr gQTDummyPort = nil;
Movie gSongMovie = nil;

void PlaySong(Str255 songFileName, Boolean loopFlag)
{
 OSErr iErr;
 FSSpec spec;
 short myRefNum;
 GrafPtr oldPort;
 TimeValue timeNow, duration;
 Fixed playRate;
 Media theMedia;

89

 /* CREATE FSSPEC FOR THE SOUND FILE */

 iErr = FSMakeFSSpec(gMyResourcesFolderFSSpec.vRefNum,
 gMyResourcesFolderFSSpec.parID,
 songFileName,
 &spec);
 if (iErr)
 DoFatalAlert("\pSong file not found");

 /* GOT TO SET A DUMMY PORT FOR QUICKTIME */
 //
 // Even though we’re only playing audio, we must set a
 // dummy port for Quicktime to “render” into.
 //

 if (gQTDummyPort == nil) // create a blank graf port
 gQTDummyPort = CreateNewPort();

 GetPort(&oldPort); // backup current port
 SetPort(gQTDummyPort); // set dummy as active port

 /* OPEN THE SOUND FILE AS A QT MOVIE */

 iErr = OpenMovieFile(&spec, &myRefNum, fsRdPerm);
 if ((myRefNum == 0) || (iErr != noErr))
 DoFatalAlert(“\pError opening movie file”);

 /* CREATE A NEW QT MOVIE FROM THE OPEN FILE */

 NewMovieFromFile(&gSongMovie, myRefNum, 0, nil,
 newMovieActive, nil);

 CloseMovieFile(myRefNum);

 /* SET MOVIE PLAY HINTS */

 SetMoviePlayHints(gSongMovie,
 0, // turn these hints off
 hintsUseSoundInterp|hintsHighQuality);

 if (loopFlag) // turn loop hint on
 SetMoviePlayHints(gSongMovie, hintsLoop, hintsLoop);

 /* PRE-LOAD MOVIE INTO RAM */

 timeNow = GetMovieTime(gSongMovie, nil);
 duration = GetMovieDuration(gSongMovie);
 playRate = GetMoviePreferredRate(gSongMovie);

Chapter 10: Audio 90

 theMedia = GetTrackMedia(GetMovieIndTrack(gSongMovie, 1));

 LoadMovieIntoRam(gSongMovie, timeNow, duration, keepInRam);
 LoadMediaIntoRam(theMedia, timeNow, duration, keepInRam);

 PrePrerollMovie(gSongMovie, timeNow, playRate, nil, nil);
 PrerollMovie(gSongMovie, timeNow, playRate);

 /* SET LOOPING CALLBACK */

 if (loopFlag)
 {
 // get timebase of movie
 TimeBase timebase = GetMovieTimeBase(gSongMovie);

 // create a new callback ref
 gMovieCallback = NewCallBack(timebase, callBackAtExtremes);

 // create callback UPP
 gMovieCallbackUPP = NewQTCallBackUPP(EndOfSongCallback);

 CallMeWhen(gMovieCallback, // callback ref
 gMovieCallbackUPP, // function to callback
 0,
 triggerAtStop, // call when movie stops
 0,0);
 }

 /* START THE MUSIC PLAYING */

 StartMovie(gSongMovie);

 gSongPlayingFlag = true;
 gLoopSongFlag = loopFlag;

 /* RESTORE THE PORT */

 SetPort(oldPort);
}

The first thing that PlaySong() does is call FSMakeFSSpec() to create a FSSpec for the audio
file we want to play:

91

 iErr = FSMakeFSSpec(gMyResourcesFolderFSSpec.vRefNum,
 gMyResourcesFolderFSSpec.parID,
 songFileName,
 &spec);

Here we pass in the volume and directory ID’s of our Resources folder that we found earlier
along with the filename of the audio file. The result is a new FSSpec that we will soon pass
to Quicktime.

Even though we are playing an audio file, Quicktime treats everything as a Quicktime
“Movie”, and since Quicktime movies play into GrafPorts, we need to create an empty
dummy GrafPtr to use. This code will create a new GrafPtr, and then it sets it as the
current port after backing up the existing port.

 if (gQTDummyPort == nil) // create a blank graf port
 gQTDummyPort = CreateNewPort();

 GetPort(&oldPort); // backup current port
 SetPort(gQTDummyPort); // set dummy as active port

The next step is to open our sound file:

 OpenMovieFile(&spec, &myRefNum, fsRdPerm);

Then we create a new Movie from the file, and then close the file since it’s not needed
anymore:

 NewMovieFromFile(&gSongMovie, myRefNum, 0, nil,
 newMovieActive, nil);

 CloseMovieFile(myRefNum);

This doesn’t seem like the logical thing to do, does it? Why would we want to close the
movie file before we’ve even played it? Well, the NewMovieFromFile() call actually creates
a new internal reference to that open file, so when we close it there’s still an open reference to
the file in the movie object. In other words, the file isn’t really completely closed.

Technically, we’re ready to play the movie now, but there are several things we can do to try
and improve playback performance. Quicktime will normally stream data from the file as it
plays it back, but if we pre-load the entire sound file into memory, then the playback will be
faster. There are also some hints we can give Quicktime about how to play the movie which
may also improve performance, and we’ll do those first:

Chapter 10: Audio 92

 SetMoviePlayHints(gSongMovie, 0,
 hintsUseSoundInterp | hintsHighQuality);

 if (loopFlag)
 SetMoviePlayHints(gSongMovie, hintsLoop, hintsLoop);

The function SetMoviePlayHints() can be used to turn various flags on and off. In our code
we’re turning off sound interpolation and turning off high quality mode. In theory this will
improve performance of the sound playback at the cost of some audio quality, but in practice
I’ve never noticed it to make any perceptible difference at all either in sound quality or in
performance. Nonetheless, just to be safe I always clear those flags.

Similarly, we use SetMoviePlayHints() to then set the hintsLoop flag which is supposed to
be a hint to Quicktime that this movie is going to loop. Unfortunately, I’ve never found this
to make any difference since with or without this flag there is always a short delay between
loops of the movie as Quicktime rewinds it. Regardless, I always set this flag in the off
chance that Apple some day makes it work correctly.

We want to pre-load the entire movie into RAM, and to do this we first gather some informa-
tion about the Quicktime movie that we’re playing:

 timeNow = GetMovieTime(gSongMovie, nil);
 duration = GetMovieDuration(gSongMovie);
 playRate = GetMoviePreferredRate(gSongMovie);
 theMedia = GetTrackMedia(GetMovieIndTrack(gSongMovie, 1));

This information is used in the following calls to do the pre-load and the pre-roll. Pre-loading
the movie places all of the data into RAM while pre-rolling the movie then causes Quicktime
to pre-initialize everything it needs to play the movie.

 LoadMovieIntoRam(gSongMovie, timeNow, duration, keepInRam);
 LoadMediaIntoRam(theMedia, timeNow, duration, keepInRam);

 PrePrerollMovie(gSongMovie, timeNow, playRate, nil, nil);
 PrerollMovie(gSongMovie, timeNow, playRate);

There are two parts of a Quicktime movie: the Movie and the Media. We pre-load both into
RAM with the LoadMovieIntoRam() and LoadMediaIntoRam() calls. You can think of the
Movie as the header data, and the Media as the actual sound wave information.

Two different pre-roll functions are called, PrePrerollMovie() and PrerollMovie().
Calling both of these makes sure that everything that could be initialized is initialized.

93

One last thing that we need to do is to set up a callback function to handle looping. Even
though we set the hintsLoop flag earlier, this does not actually cause a movie to loop when it
reaches the end. Unfortunately, all looping in Quicktime needs to be handled manually, but
at least we can ask Quicktime to issue a callback when the movie reaches the end. Four
function calls are needed to create this callback and install it into the movie that we’re about
to start playing:

 timebase = GetMovieTimeBase(gSongMovie);
 gMovieCallback = NewCallBack(timebase, callBackAtExtremes);
 gMovieCallbackUPP = NewQTCallBackUPP(EndOfSongCallback);
 CallMeWhen(gMovieCallback,
 gMovieCallbackUPP,
 0,
 triggerAtStop,
 0,0);

GetMovieTimeBase() extracts some timing and identity information out of the movie, and
then we pass that to NewCallBack() along with the constant callBackAtExtremes to define
what kind of callback we’re creating. Our callback function is defined with
NewQTCallBackUPP() and then CallMeWhen() is used to tell Quicktime to issue the callback
when the movie stops. We’ll go into the details of this callback in a few pages.

Finally, we’re ready to play the music, so we make one last call to Quicktime to get it going:

 StartMovie(gSongMovie);

Updating Quicktime with MoviesTask() Inside a Thread
Unfortunately, Quicktime requires some hand holding to keep it going. For reasons that
don’t make much sense, you have to continuously call the Quicktime function MoviesTask(),
otherwise your movie will stop playing. This seems to go against the general philosophy of
Mac OS X and the way things work, but it is what it is, and you must call MoviesTask()
quite often, like 10 times per second!

Calling MoviesTask() at such a high rate can be very difficult sometimes, especially if you
want your music to keep playing during level loading when you’re not in any kind of loop in
which you could continuously call it. I used to just insert MoviesTask() calls all over the
place in my code, so that it would constantly get called during file loading and initialization
functions. However, this began to break down when we were working on Nanosaur 2.

Nanosaur 2 used some huge textures, and lots of them. As the textures were read in from the
data files, they would get pre-loaded into VRAM by a glBindTexture() call, but as VRAM

Chapter 10: Audio 94

started to fill up it would take OpenGL longer and longer to complete this upload. On
machines with very low VRAM it would sometimes take as long as 3 seconds to complete a
glBindTexture() call. Unfortunately, during this time there was no way to call
MoviesTask(), so the music would stutter horribly.

After working with Apple for a solid 24 hours on this problem, we came to the only solution
which seemed to work: we’d have to create a separate code thread who’s sole purpose in life
was to call MoviesTask() at the constant rate of 10 times per second. Threads are part of the
Mac’s multi-tasking capabilities that allow different pieces of code run in different threads.
To update MoviesTask() we are going to create a “pthread” since they’re easy to set up and
easy to use.

Somewhere in your game’s InitAudio() function you’ll need to put this line of code:

 err = pthread_create(&myThread, nil, MySongThread, nil);

That simple call to pthread_create() is all that is needed to start a new processor thread to
our function MySongThread(), but things do get a little trickier inside that thread’s function:

Listing 10-3:The Song Thread
void *MySongThread(void *in)
{
 AbsoluteTime expTime;

 while(true) // loop inside here forever
 {
 /* CALCULATE THE TIME OF NEXT LOOP */
 //
 // Calculate current time + 100 milliseconds.
 // That’s when we’ll want to loop thru again.
 //

 expTime = AddDurationToAbsolute(100 * kDurationMillisecond,
 UpTime());

 /* UPDATE MOVIES TASK */
 //
 // We must be very careful not to call MoviesTask()
 // while some other Quicktime call is in progress!
 //

 if (!gInQuicktimeFunction)
 {
 if (gSongMovie)
 {
 gInMoviesTask = true;

95

 MoviesTask(gSongMovie, 0);
 gInMoviesTask = false;
 }
 }

 /* WAIT UNTIL IT’S TIME TO LOOP AGAIN */

 MPDelayUntil(&expTime);
 }

 return 0;
}

Unlike Timer events that we discussed in Chapter 9, threads are not continuously called by
some thread manager somewhere. Instead, this Thread function is called just once, so we
must stay inside of it for as long as we want the thread running. The OS will allocate CPU
time to each thread running, so just think of the thread as it’s own little application running
all by itself.

We don’t want our thread to use up any more CPU time than is necessary, therefore, rather
than just sitting in a tight loop constantly calling MoviesTask() we will call it once and then
tell the OS to go work on other treads until we need to call it again. MoviesTask() only
needs to be called about 10 times per second, so to regulate that we essentially set an alarm
clock that will wake us up when it’s time to call MoviesTask() again. To set the alarm’s
wakeup time, we get the current system clock time with UpTime() and then add the equiva-
lent of 1/10th of a second to it:

 expTime = AddDurationToAbsolute(100 * kDurationMillisecond, UpTime());

The value expTime now contains the system clock time when we’ll want our alarm to wake
us up. MoviesTask() is called, and then we turn on our alarm clock by calling
MPDelayUntil():

 MPDelayUntil(&expTime);

This tells the CPU to go off and do other tasks until the system clock reaches our calculated
“alarm” time. When that time is reached, MPDelayUntil() will exit, and our thread will once
again have control and the whole process repeats. If we did not include this delay in our
thread loop, the OS would assume that this thread needs a huge amount of CPU time, so it
would try to give it all it could. As a result, everything else on the computer would slow
down, so calling MPDelayUntil() is critically important.

Threads are pieces of code that are running in parallel with other parts of your program, so if
we were to call MoviesTask() from our thread while the main application thread was making

Chapter 10: Audio 96

some other Quicktime call, it could result in a crash. We get around this problem by setting
flags to indicate that Quicktime is busy, therefore, we shouldn’t try to make any other
Quicktime calls until it’s safe.

In MySongThread(), we always check the flag gInQuicktimeFunction to be sure that it’s ok
to call MoviesTask(). Similarly, when we call MoviesTask() we set another flag,
gInMoviesTask to let the rest of the application know about it. For example, if we were
going to change the volume of our song we would have some code like this:

Listing 10-4:Changing the Song Volume
static volatile Boolean gInQuicktimeFunction = false;
static volatile Boolean gInMoviesTask = false;

 gInQuicktimeFunction = true; // dont allow song thread to
 // call MoviesTask().

 while(gInMoviesTask); // wait until thread is done with
 // MoviesTask().

 SetMovieVolume(gSongMovie, volume); // change volume

 gInQuicktimeFunction = false; // all clear

First we set the gInQuicktimeFunction flag to true so that our thread won’t call
MoviesTask() while we’re doing this. Then we check if MoviesTask() was already being
called. If so, then we just sit in a while loop until it’s done.

Note that these flags must be declared as volatile variables. This is critical! These vari-
ables are being modified off of an interrupt, so they can change at any moment. By making
them volatile, the compiler will generate code that insures that the values are re-loaded
from memory every time they’re referenced.

Looping a Song
Earlier in this chapter we discussed setting up a callback function to handle the looping of our
Quicktime movie to cause the song to repeat, so now it’s time to talk details. MoviesTask()
will cause our callback function EndOfSongCallback() to be called when it detects that the
song has ended. It is important to remember that we’re only calling MoviesTask() from
MySongThread(), and not all Mac OS calls are thread-safe. For this reason, we want to limit
what we do inside of our callback:

97

Listing 10-5:The Loop Song Callback
pascal void EndOfSongCallback(QTCallBack callback, long refCon)
{
 GoToBeginningOfMovie(gSongMovie); // rewind song

 CallMeWhen(gMovieCallback, // reinstate the callback
 gMovieCallbackUPP,
 0,
 triggerAtStop,
 0,0);

 StartMovie(gSongMovie); // start playing again
}

GoToBeginningOfMovie() will rewind the song back to the beginning, and then
StartMovie() will cause it to continue playing. In between those calls we call
CallMeWhen() to reinstate our callback. Once the callback has occurred, it won’t get trig-
gered again unless we reinstate it each time.

Note that we do not need to do any of our safety checks with the gInQuicktimeFunction or
gInMoviesTask flags because we already did this safety check before we called EnterMov-
ies(), so we’re still safe in our callback which was called from inside EnterMovies().

The nice thing about this method of looping our game music is that it happens automatically
since it’s running on that dedicated thread. However, our thread is only updating
MoviesTask() about 10 times per second which means that there could be as much as a 10th
of a second from the time a song ends to the time we become aware of that and try to rewind
it. This is not the sole cause of the delay that Quicktime experiences when looping audio, but
it certainly contributes to it.

Your game will be running at a rate higher than 10 frames per second (hopefully), so you can
choose to manually check the movie status in the game’s main loop with a test like this:

Listing 10-6:Optional Song Completion Test
 /* DO SAFETY CHECK */

 gInQuicktimeFunction = true;
 while(gInMoviesTask);

 /* IF MOVIE IS DONE THEN REWIND */

 if (IsMovieDone(gSongMovie))
 {

Chapter 10: Audio 98

 GoToBeginningOfMovie(gSongMovie);
 StartMovie(gSongMovie);
 }

 gInQuicktimeFunction = false;

This may trim a fraction of a second off of the delay between loops in your song, but there’s
still going to be a delay. For this reason, I wouldn’t worry about doing this extra test.

The Quicktime Music.xcode sample project demonstrates all of this code, and it includes
several more utility functions for working with Quicktime. See the new source file Audio.c.

The Sound Manager for Playing Effects
Since the beginnings of Mac OS the Sound Manager has existed as a way to easily play sound
effects. Unfortunately, with OS X, some parts of the Sound Manager got phased out as Apple
tried to encourage developers to use Core Audio instead. Core Audio is a totally new sound
system for OS X, but it is very, very low level. So low level that it was never really a
practical way to do audio in games, because rudimentary things like increasing the pitch of an
effect was virtually impossible to implement. So, even though the Sound Manager lost some
functionality on OS X, game developers continued to use it as the only practical way of
generating sound effects in games. Recently, however, Apple announced support for Ope-
nAL which is an alternative to the Sound Manager, and I’ll cover that topic in the last part of
this chapter, but the Sound Manager remains the only standard, built-in way to do sound
effects on any version of OS X, and it’s what every game I’ve ever written has used.

Sound Channels
The Sound Manager works on the concept of Sound Channels. A channel plays a single
digital audio sample, and you can set the pitch, volume, and other parameters of the channel’s
playback. When we initialize our game, we need to initialize all of the sound channels that
we think we’ll need. If you think your game will need to play up to 30 simultaneous sound
effects, then initialize 30 sound channels. Allocating and initializing a sound channel would
normally be a very simple thing to do, but since we’re writing a game and we need maximum
performance, things get a little more complicated.

Listing 10-7:Initializing Sound Manager Channels
void InitSoundManagerChannels(void)
{
 OSErr iErr;

99

 short i;
 ExtSoundHeader sndHdr;
 const double rate = rate44khz;
 SndCommand mySndCmd;
 SndChannelPtr channel;

 /***************************/
 /* MAKE DUMMY SOUND HEADER */
 /***************************/
 //
 // This mimics the header of a sound file with no data.
 // it is needed below to issue sound commands to optimize
 // the channels.
 //

 sndHdr.samplePtr = nil;
 sndHdr.sampleRate = rate44khz;
 sndHdr.loopStart = 0;
 sndHdr.loopEnd = 0;
 sndHdr.encode = extSH;
 sndHdr.baseFrequency = 0;
 sndHdr.numFrames = 0;
 sndHdr.numChannels = 2;
 dtox80(&rate, &sndHdr.AIFFSampleRate);
 sndHdr.markerChunk = 0;
 sndHdr.instrumentChunks = 0;
 sndHdr.AESRecording = 0;
 sndHdr.sampleSize = 16;
 sndHdr.futureUse1 = 0;
 sndHdr.futureUse2 = 0;
 sndHdr.futureUse3 = 0;
 sndHdr.futureUse4 = 0;
 sndHdr.sampleArea[0] = 0;

 /*********************/
 /* ALLOCATE CHANNELS */
 /*********************/

 for (i = 0; i < MAX_CHANNELS; i++)
 {
 /* NEW SOUND CHANNEL */

 iErr = SndNewChannel(&channel, sampledSynth,
 initStereo + initNoInterp,
 NewSndCallBackUPP(LookSoundCallback));
 if (iErr)
 break;

 /* ISSUE SOME COMMANDS TO OPTIMIZE THE CHANNEL */

Chapter 10: Audio 100

 //
 // The initNoInterp command used above is ignored by
 // the Sound Manager. To actually cause initNoInterp
 // to work, we must do it this way:
 //

 mySndCmd.cmd = soundCmd; // install the bogus sound
 mySndCmd.param1 = 0;
 mySndCmd.param2 = (long)&sndHdr;
 SndDoImmediate(channel, &mySndCmd);

 mySndCmd.cmd = reInitCmd; // re-init the channel
 mySndCmd.param1 = 0;
 mySndCmd.param2 = initNoInterp | initStereo;
 SndDoImmediate(channel, &mySndCmd;

 /* INIT SOME OF OUR CHANNEL INFO */

 gChannelInfo[i].channel = channel; // save channel into list
 gChannelInfo[i].isLooping = false; // clear looping flag

 }

 /* REMEMBER HOW MANY CHANNELS WE ALLOCATED SUCCESSFULLY */

 gNumChannels = i;
}

The first thing this function does is to define a dummy sound header. Sound effects will have
headers on them that contain all the important information about the sound such as size,
frequency, loop points, etc. We will use this dummy sound header for the sole purpose of
issuing some sound commands to initialize certain Sound Channel parameters, but first we
create a new sound channel:

 SndNewChannel(&channel, sampledSynth, initStereo+initNoInterp,
 NewSndCallBackUPP(LookSoundCallback));

The constant sampledSynth tells the Sound Manager that this sound channel plays sampled
digital data (as opposed to algorithmically generated sounds). Notice that we pass in the
initStereo+initNoInterp init flags, but due to a bug in the Sound Manager these flags are
usually ignored.

SndNewChannel() also takes a pointer to a callback function that is used to loop sound
effects. Looping sound effects with the Sound Manager is very similar to looping music with
Quicktime as we discussed earlier in this chapter. Luckily, however, with the Sound Man-
ager the audio will loop seamlessly instead of having a short pause between loops. In older

101

versions of the Sound Manager, manual looping was not necessary. The Sound Manager
used to recognize the loop data embedded in the sound header, therefore, it would automati-
cally loop any effects that needed it. But something broke in OS 9 that resulted in the need
for these callbacks to manually handle looping effects.

After we’ve allocated our new sound channel, we need to re-initialize it since the init flags we
passed to SndNewChannel() were ignored. To do this we attach our dummy sound header to
the sound channel, and then issue a reInitCmd command to set the flags we want. The
dummy header is attached to the channel like this:

 mySndCmd.cmd = soundCmd;
 mySndCmd.param1 = 0;
 mySndCmd.param2 = (long)&sndHdr;
 SndDoImmediate(channel, &mySndCmd);

Then the re-initialize command is issued and we pass in those initialization flags:

 mySndCmd.cmd = reInitCmd;
 mySndCmd.param1 = 0;
 mySndCmd.param2 = initNoInterp | initStereo;
 SndDoImmediate(channel, &mySndCmd;

Sound channels work by issuing commands to them. There are commands to set the play-
back frequency, change the volume, stop the channel, start the channel, etc. But for now we
just need to issue two commands:

soundCmd
This command attaches a sound to the channel. In our case above, we’re attaching a dummy
sound defined by our dummy header.

reInitCmd
This command reinitializes the sound channel with the flags in param2. There must be a
sound attached to the channel before this command will work. That’s why we issue the
soundCmd first.

Listing 10-8:The Sound Channel Callback
pascal void LoopSoundCallback(SndChannelPtr chan,
 SndCommand *cmd)
{
 SndCommand theCmd;

 // Play the sound again

Chapter 10: Audio 102

 theCmd.cmd = bufferCmd;
 theCmd.param1 = 0;
 theCmd.param2 = cmd->param2;
 SndDoCommand (chan, &theCmd, true);

 // Just reuse the callBackCmd that got us here in the first place

 SndDoCommand (chan, cmd, true);
}

Listing 10-8 shows how our callback function works. It sends a bufferCmd to the sound
channel to cause the sound to play from the beginning, and then it puts the current command
(the command which caused the callback) back into the channel so that we’ll get called again
the next time the sound needs to loop.

Sound Resources
There are a number of ways to load sound effects for the Sound Manager to use, but the
easiest and cleanest method is to use old-fashioned Sound Resources. Apple frowns on
modern OS X applications having any files with resource forks, but since they haven’t
provided us with any better way to store and access the hundreds of sound effects that our
games will need, feel free to use them. The only downside to using Sound Resources is that
no modern audio application supports them, so to work with them you’ve got to either write
your own utility for copying sound files into resources, or you’ve got to use something like
SoundEdit 16 to do it for you.

SoundEdit 16 is an old but wonderful sound effect editing application. It does pretty much
everything that I’ve ever needed for any sound effects in my games, so I still use it to this
day, and it’s the only Classic application I ever have to run.

103

Figure 10-2: SoundEdit 16 with the sound resources from Enigmo open.

Using sound resources in our game engine is really easy. When the game starts up we need
to pre-load all of the sound resources into memory with a function like this:

Listing 10-9:Loading Sound Resources
SndListHandle gSndHandles[MAX_EFFECTS];
long gSndOffsets[MAX_EFFECTS];

void LoadSoundResources(FSSpec *spec)
{
 short refnum, numSoundsInFile,i;

 /* OPEN THE RESOURCE FILE FILE */

 refnum = FSpOpenResFile(spec, fsCurPerm);
 if (refnum == -1)
 DoFatalAlert("\pSound resource file not found!");

 UseResFile(refnum);

 /* COUNT # OF SND RESOURCES IN THE FILE */

 numSoundsInFile = Count1Resources('snd ');
 if (numSoundsInFile > MAX_EFFECTS)
 DoFatalAlert("\pToo many sounds!");

Chapter 10: Audio 104

 /****************************/
 /* LOAD EACH SOUND RESOURCE */
 /****************************/

 for (i=0; i < numSoundsInFile; i++)
 {
 /* GET THE SOUND */

 gSndHandles[i] = (SndListResource **)GetResource('snd ',
 10000 + i);

 if (gSndHandles[i] == nil)
 DoFatalAlert("\pGetResource failed!");

 /* CONVERT TO A REGULAR HANDLE & LOCK IT */

 DetachResource((Handle)gSndHandles[i]);
 HNoPurge((Handle)gSndHandles[i]);
 HLockHi((Handle)gSndHandles[i]);

 /* GET OFFSET TO SOUND HEADER */

 GetSoundHeaderOffset(gSndHandles[i], &gSndOffsets[i]);
 }

 CloseResFile(refnum);
}

The code in Listing 10-8 is pretty standard Resource Manager stuff that you’ve probably seen
a million times before if you’re used to programming on older versions of Mac OS. We open
the resource fork of the desired file, count the number of ‘snd’ resources in the file, and then
start loading them in with GetResource(). It is important that this data doesn’t move around,
so we detach the handle from the resource and then lock it down and make sure that it’s not
purgeable:

 HNoPurge((Handle)gSndHandles[i]);
 HLockHi((Handle)gSndHandles[i]);

The sound resource has some extra data in it that we don’t need, so we call
GetSoundHeaderOffset() to find the offset in the resource to the start of the actual sound
header that the Sound Manager needs:

 GetSoundHeaderOffset(gSndHandles[i], &gSndOffsets[i]);

We’ll see how this offset is used later when we actually play one of these sound effects.

105

Once we’ve got our sound resources loaded, it’s quite easy to play one of them. The first step
will be to locate an available sound channel to play it on. We’ve already initialized our list of
sound channels, so the new function FindSilentChannel() will scan our list and return the
first available channel – a channel that is not currently playing any sound:

Listing 10-10: Finding a Free Sound Channel
static short FindSilentChannel(void)
{
 short c;
 OSErr iErr;
 SCStatus theStatus;

 for (c = 0; c < gNumChannels; c++)
 {
 /* LOOPING CHANNELS ARE OBVIOUSLY NOT AVAILABLE */

 if (gChannelInfo[c].isLooping)
 continue;

 /* GET CHANNEL STATUS */

 iErr = SndChannelStatus(gChannelInfo[c].channel,
 sizeof(SCStatus),
 &theStatus);
 if (iErr != noErr)
 continue;

 /* SEE IF CHANNEL IS BUSY */

 if (theStatus.scChannelBusy)
 continue;

 return(c);
 }

 /* NO FREE CHANNELS */

 return(-1);
}

There are two reasons why we check the isLooping flag of each channel: For starters, this is
simply faster than calling SndChannelStatus(), so if a sound effect is looping then we’ll
know right away and can avoid one extra call to that function. Additionally,
SndChannelStatus() can sometimes give incorrect information on channels that have been
looped. When we call SndChannelStatus() the scChannelBusy flag is supposed to be set to

Chapter 10: Audio 106

true if the channel is playing audio, however, this flag will sometimes appear as false if an
effect has been looped. The flag is always valid on single-shot effects, however.

Now let’s see the code to actually play some sound:

Listing 10-11: Playing a Sound Effect
short PlayEffect(short sndNum, u_long leftVolume, u_long rightVolume,
 u_long rateMultiplier)
{
 SndCommand mySndCmd;
 SndChannelPtr chanPtr;
 short chanNum;
 u_long loopStart, loopEnd;
 SoundHeaderPtr sndPtr;

 /* GET POINTER TO THE SOUND HEADER */

 sndPtr = (SoundHeaderPtr)(((long)*gSndHandles[sndNum]) +
 gSndOffsets[sndNum]);

 /* GET A FREE CHANNEL */

 chanNum = FindSilentChannel();
 if (chanNum == -1) // no free channels
 return(-1);

 /*********************************/
 /* ISSUE COMMANDS TO THE CHANNEL */
 /*********************************/

 chanPtr = gChannelInfo[chanNum].channel;

 /* FLUSH ANY OLD COMMANDS OUT OF THE CHANNEL */

 mySndCmd.cmd = flushCmd;
 mySndCmd.param1 = 0;
 mySndCmd.param2 = 0;
 SndDoImmediate(chanPtr, &mySndCmd);

 /* MAKE SURE NO SOUND IS PLAYING ON THIS CHANNEL */

 mySndCmd.cmd = quietCmd;
 mySndCmd.param1 = 0;
 mySndCmd.param2 = 0;
 SndDoImmediate(chanPtr, &mySndCmd);

 /* SET LEFT & RIGHT VOLUME FOR CHANNEL */

107

 //
 // param2 = 32-bit word containing the right
 // volume in the upper 16 bits, and the
 // left volume in the lower 16 bits.
 //

 mySndCmd.cmd = volumeCmd;
 mySndCmd.param1 = 0;
 mySndCmd.param2 = (rightVolume << 16) | leftVolume;
 SndDoCommand(chanPtr, &mySndCmd, true);

 /* START PLAYING THE CHANNEL */
 //
 // param2 points to the sound’s header
 //

 mySndCmd.cmd = bufferCmd;
 mySndCmd.param1 = 0;
 mySndCmd.param2 = sndPtr;
 SndDoCommand(chanPtr, &mySndCmd, true);

 /* SET THE PLAYBACK FREQUENCY */
 //
 // This has to be done after bufferCmd above
 //

 mySndCmd.cmd = rateMultiplierCmd;
 mySndCmd.param1 = 0;
 mySndCmd.param2 = rateMultiplier;
 SndDoImmediate(chanPtr, &mySndCmd);

 /***********************************/
 /* SEE IF THIS IS A LOOPING EFFECT */
 /***********************************/
 //
 // We look in the sound’s header to see if it loops.
 //

 loopStart = sndPtr->loopStart;
 loopEnd = sndPtr->loopEnd;
 if ((loopStart + 1) < loopEnd)
 {
 /* SET THE CALLBACK COMMAND */

 mySndCmd.cmd = callBackCmd;
 mySndCmd.param1 = 0;
 mySndCmd.param2 = sndPtr;
 SndDoCommand(chanPtr, &mySndCmd, true);

 gChannelInfo[chanNum].isLooping = true;

Chapter 10: Audio 108

 }
 else
 gChannelInfo[chanNum].isLooping = false;

 /* SET MY INFO */

 return(chanNum); // return channel #
}

Our PlayEffect() function takes a left and right volume value and something called a rate
multiplier value which determines the frequency at which the sound is played. In the Sound.h
framework file the constant kFullVolume is defined. Passing this value to PlayEffect()
will cause the left and/or right channels to be played at their maximum volume without over-
amplifying it. If you wanted to play the sound at half volume then you would pass in
kFullVolume / 2. Or, if you did want to over-amplify the effect you could pas in
kFullVolume * 2 which would double the volume of the channel, but it would most likely
cause some waveform clipping and distortion since the sound wave is being amplified beyond
its limits.

Unfortunately, there are no built-in constants in Sound.h for the rate multiplier, so we’ve got
to make our own:

 #define kNormalRate 0x10000

This rate value is a fixed-point multiplier where the lower 16-bits represent the fractional
value, so 0x10000 is essentially 1.0. If we wanted to lower the pitch by 50% then we’d pass
in kNormalRate / 2. Or, to double the pitch, we’d pass kNormalRate * 2.

So, to play sound effect #0 with the stereo volume shifted right, but at the default pitch, we
call our PlayEffect() function like so:

 PlayEffect(0, kFullVolume/3, kFullVolume, kNormalRate);

Once a sound channel is playing we can continue to send commands to it to alter the playback
parameters. Here’s a function to change the volume of the channel as it’s playing:

109

Listing 10-12: Changing the Channel Volume
void ChangeChannelVolume(short channel, u_long leftVol, u_long rightVol)
{
 SndCommand mySndCmd;
 SndChannelPtr chanPtr;

 chanPtr = gChannelInfo[channel].channel; // get the channel ptr

 /* SEND A VOLUME COMMAND TO THE CHANNEL */

 mySndCmd.cmd = volumeCmd;
 mySndCmd.param1 = 0;
 mySndCmd.param2 = (rightVol << 16) | leftVol;
 SndDoImmediate(chanPtr, &mySndCmd);
}

The results of a volume command are pretty much instantaneous thanks to the
SndDoImmediate() call. You can very smoothly ramp the volume of each channel up and
down as you need in your game, and it will sound very even. The same goes for changing the
pitch of the sound channel:

Listing 10-13: Changing the Channel Pitch
void ChangeChannelRate(short channel, long rateMult)
{
 SndCommand mySndCmd;
 SndChannelPtr chanPtr;

 chanPtr = gChannelInfo[channel].channel; // get the channel ptr

 /* SEND A RATE MULTIPLIER COMMAND */

 mySndCmd.cmd = rateMultiplierCmd;
 mySndCmd.param1 = 0;
 mySndCmd.param2 = rateMult;
 SndDoImmediate(chanPtr, &mySndCmd);
}

Including Sound Resource Files in an Xcode Project
The sample project “Sound Manager Effects.xcode” demonstrates all of these functions, but
there is one part of this project that is important to take notice of: Xcode is a little picky
about including old fashioned .rsrc files in a project, so we have to do something funky to get
it to properly copy and install our Sounds.rsrc file into the game’s Resources folder. Nor-

Chapter 10: Audio 110

mally when you drag an .rsrc file into an Xcode project it adds that file to the Target’s
“Resource Manager Resources” build phase (see Figure 10-3):

Figure 10-3: The Sound.rsrc file in the Resource Manager Resources build phase

This won’t actually work, because Xcode will not properly copy that Sound.rsrc file. The
results of this would be a corrupt resource file, an incorrectly named resource file, or both.
To force Xcode to copy any old-style resource file, you must add a new “Copy Files” build
phase, move the .rsrc file to that phase, and then delete the Resource Manager Resources
build phase. It should end up looking like this:

Figure 10-4: A Copy Files build phase is the only way to include .rsrc files

You create a new Build Phase by right-clicking on the Target and then selecting a new Build
Phase type from the pop-up menu’s list. When you create the Copy Files build phase, be sure
to specify that its Destination is set to “Resources”:

111

Figure 10-5: Set the Copy Files build phase destination to Resources

Compile and run the sample project. Then look in the game’s Special menu. You’ll see
some menu items for playing different sound effects so that you can test sounds from there.

Every game that I have ever written has used the Sound Manager to play effects. Even
though Apple has essentially discontinued the Sound Manager, it is still a part of OS X and it
works great! But, if you’re feeling adventurous you might want to consider using the next
technology that I’m going to discuss: OpenAL.

OpenAL
OpenAL is the audio equivalent of OpenGL. It is a standardized audio library that exists on
many platforms, and has recently been adopted by Apple as the way of the future for playing
sound in applications such as games. One of the nice things about OpenAL is that unlike the
Sound Manager which just plays basic waveforms with some easy pitch and volume options,
OpenAL supports full 3D spatial placement effects like Doppler shift, reverb, etc. In theory,
if any hardware accelerated audio cards ever becomes available for the Mac then this tech-
nology should make use of it.

That’s the good news. Unfortunately, the first version of OpenAL that will be feature
complete is the upcoming version for Mac OS 10.4. The current version of OpenAL at the
time of this writing is 1.0.12 and it’s not very good. It only does simple attenuated and
panned 3D sounds. No Doppler shifting or anything else.

The Pro’s of OpenAL
• The API is much simpler yet more powerful than the Sound Manager. There’s none of the
messy sound command code that we’re stuck with when using the Sound Manager.

Chapter 10: Audio 112

• Support for full 3D sound including panning, attenuation, Doppler shifts, and even support
for multi-speaker sound systems, not just 2-speaker stereo systems.

• If sound hardware ever becomes readily available for the Mac, your old games using
OpenAL may just suddenly support it.

• OpenAL is standardized across many platforms, so porting your game will be much easier
since you won’t have to re-write the entire sound engine.

The Con’s of OpenAL
• No built-in way to organize your hundreds of sound effects. The Sound Manager lets you
use Sound Resources to organize all of your game’s sound effects, but with OpenAL, you’ve
either got to design your own system for grouping sounds into data files, or you’re stuck with
just having hundreds of little WAV files sitting around that you’ve got to manually load.

• No way to handle audio in games that have 2-player split-screen modes. OpenAL only has
one “Listener” so if you have more than one camera as in a split-screen game like Cro-Mag
Rally or Nanosaur 2, you’re out of luck. In my games that support a split-screen mode I
manually calculate the sound volume such that each sound plays at the loudest volume of
either Player 1 or Player 2. This gives the best sound for such a situation, but OpenAL has no
means of doing this. It will only play audio based on either Player 1 or Player 2’s camera, but
not both. I consider this to be a major, major oversight by the OpenAL design committee.

• As of Mac OS 10.3, OpenAL is not actually a part of the OS. If your game supports
OpenAL, you’ve either got to include the OpenAL libraries with your game’s installer, or tell
the user to go download the latest OpenAL installer from www.openal.org. From a market-
ing standpoint, this is extremely bad. However, Apple will include OpenAL as part of future
versions of Mac OS X.

• No support for non-zero loop-back points. OpenAL supports looping sounds, but it only
loops back to the very beginning of the sound; you cannot have a loop point that’s elsewhere
in the sound like you can with the Sound Manager. Suppose you wanted to have a guitar
string effect in your game. The first part of the sound is the “attack” and the second part is
the “sustain” - the part that loops. If you looped the whole sound, it would have a “Pling!
Pling! Pling! Pling!” sound to it, but if you set a loop-point at the start of the sustain section,
it would have a “Plinggggggggggg” sound to it which is the correct behavior.

• Faking panning is a hassle. Sometimes you simply want to play an effect, and have it sound
like it’s coming from the left speaker (such as is often done on menus screens). With the

113

Sound Manager this is as easy as just passing a volume command to the sound channel. But
OpenAL has no manual way to do this. You would actually have to play the sound in 3D
space in such a way that it does the desired panning.

Hopefully, over time many of the cons will go away as more features are added to OpenAL,
but until then you’ll have to consider whether to go with OpenAL or Sound Manager for your
immediate game programming needs. If your primary concern is making sure that everyone
can play your game, then just stick with the Sound Manager, but if your primary concern is
having cool 3D audio then use OpenAL. For the remainder of the sample code in this book
we’re going to be using OpenAL for playing sound effects, and Quicktime for streaming our
music.

Initializing OpenAL
There are four fundamental parts of OpenAL that need to be set up in order to play sounds:
the AL Context, Buffers, Sources, and the Listener. Before we proceed, we should define
what these terms mean:

AL Context
In the same way that an OpenGL context refers to the window or display that you are drawing
graphics into, an OpenAL context refers to the sound system on your computer.

Buffers
A Buffer is your sound wave data plus some state information that determines how that sound
should be played.

Sources
This is a point in your 3D world that makes sound – a sound source. If there is an explosion
in your game, then you’ll create a Source at the coordinate of the explosion.

Listener
There is only one Listener in an OpenAL context. It represents your ears in space, which, in
a game is typically the same as the camera location.

First things first. Let’s initialize the OpenAL Context:

Chapter 10: Audio 114

Listing 10-14: Initializing the OpenAL Context
void OAL_Init(void)
{
 ALCcontext *al_context;
 ALCdevice *al_device;
 OSErr iErr;

 /* CREATE AN OPENAL CONTEXT */

 al_device = alcOpenDevice(nil);
 al_context = alcCreateContext(al_device,0);
 alcMakeContextCurrent(al_context);

 if (alGetError() != AL_NO_ERROR)
 DoFatalAlert("\pcreating OpenAL context failed");

 /* SET SOME STATE INFO */

 alDistanceModel(AL_INVERSE_DISTANCE_CLAMPED);
 alEnable(ALC_CONVERT_DATA_UPON_LOADING);
 alSetInteger(ALC_SPATIAL_RENDERING_QUALITY,
 ALC_SPATIAL_RENDERING_QUALITY_LOW);
 alSetInteger(ALC_RENDER_CHANNEL_COUNT,
 ALC_RENDER_CHANNEL_COUNT_STEREO);

 iErr= alGetError();
 if (iErr != AL_NO_ERROR)
 DoFatalAlert("\psetting OpenAL state failed");

 /* INIT ALUT */

 alutInit(nil, nil);
}

We pass nil to alcOpenDevice() which tells OpenAL to open a connection to the default
audio device. Next we call alcCreateContext() to create our audio context reference, and
then alcMakeContextCurrent() to set it as the current context. That’s all there is to it!
Much easier than creating an OpenGL context, eh?

Now that we have an active OpenAL context we need to set up some state information just
like we would do in OpenGL. The first thing we set is the distance model. The distance
model determines how the volume of a sound will decay over distance. The best setting for
this is AL_INVERSE_DISTANCE_CLAMPED. This causes the correct decay in volume over

115

distance, but also keeps the audio from getting over amplified if the camera gets too close to
the sound Source. It’s the virtual equivalent of not blowing out your eardrums.

Next, we enable an important feature of OpenAL on the Mac:

 alEnable(ALC_CONVERT_DATA_UPON_LOADING);

OpenAL on the Mac is built on top of Core Audio, and Core Audio uses floating-point values
to represent data in a digital waveform. This is very unusual since most sound data is in the
form of 8, 16, or 24-bit integer values. Converting this traditional waveform data on the fly
while a sound is playing is expensive, so by enabling ALC_CONVERT_DATA_UPON_LOADING
we’re telling OpenGL to do this integer to float conversion when sounds are loaded.

Games require a lot of CPU power, so sometimes sacrifices must be made in the name of
frame rate. Audio processing can be a very CPU intensive thing, especially if there are
dozens of sound effects playing simultaneously, therefore, it is wise to set the OpenAL spatial
rendering quality to the low setting:

 alSetInteger(ALC_SPATIAL_RENDERING_QUALITY,
 ALC_SPATIAL_RENDERING_QUALITY_LOW);

Odds are that nobody will be able to tell much difference between the low and high settings,
but the low setting will save some CPU time.

The next parameter that we set is an interesting one. Most Mac users don’t have fancy
quadraphonic sound systems, but rather they have simple, stereo, 2-speaker systems. We
should let OpenAL know this:

 alSetInteger(ALC_RENDER_CHANNEL_COUNT,
 ALC_RENDER_CHANNEL_COUNT_STEREO);

In rare cases, however, a user might actually have a multi-speaker setup for doing true
surround sound on their computer. In this case you could pass the constant
ALC_RENDER_CHANNEL_COUNT_MULTICHANNEL to alSetInteger(). With this parameter set,
OpenAL will correctly handle these systems.

Just like in OpenGL where there is a glut (GL Utility) library, in OpenAL there is an alut (AL
Utility) library. Before making any alut calls, we need to initialize it with a call to
alutInit(). The most important alut call that we’ll be using is alutLoadWAVFile().

Chapter 10: Audio 116

Loading Sound Files for OpenAL
As was mentioned earlier, OpenAL has no way of organizing sound files like we can do with
the Sound Manager. The only built-in support for sound files in OpenAL 1.0 is a function
called alutLoadWAVEFile() for automatically loading a WAV sound file, however future
versions of OpenAL will support other file formats. To load a bunch of sound files into our
game we need a function like this:

Listing 10-15: Loading WAV Files
void OAL_LoadWAVFiles(short numFiles, char *filenames[])
{
 short i;
 ALenum format;
 ALsizei freq;
 void *data;
 ALsizei size;
 OSErr iErr;
 FSSpec spec;
 static char fullPathname[MAX_PATHNAME_LEN];

 if (numFiles > MAX_SOUND_BUFFERS) // check for overflow
 DoFatalAlert("\pnumFiles > MAX_SOUND_BUFFERS");

 /*************************************/
 /* LOAD EACH WAV INTO A SOUND BUFFER */
 /*************************************/
 //
 // Buffers store the information about how a sound should
 // be played and the sound data itself. So, here we
 // essentially create a buffer and load a WAV file into it.
 //

 for (i = 0; i < numFiles; i++)
 {
 /* CREATE AN FSSPEC FOR THIS WAV FILE */

 iErr = FSMakeFSSpec(gMyResourcesFolderFSSpec.vRefNum,
 gMyResourcesFolderFSSpec.parID,
 filenames[i],
 &spec);

 if (iErr != noErr)
 DoFatalAlert("\pCannot find our WAV file");

 /* CONVERT THE FSSPEC TO A FULL PATHNAME */

 GetFullPathFromFSSpec(&spec, fullPathname, 1000);

117

 /* LOAD THE WAV FROM THE PATHNAME */

 alutLoadWAVFile(fullPathname, &format, &data, &size, &freq);

 /* ALLOCATE A BUFFER */

 alGenBuffers(1, &gSoundBuffers[i]);

 /* COPY WAV'S DATA TO THE BUFFER */

 alBufferData(gSoundBuffers[i], format, data, size, freq);

 /* UNLOAD THE WAV FILE */

 alutUnloadWAV(format, data, size, freq);
 }
}

The OAL_LoadWAVFiles() function takes a list of filenames as input, and then it goes through
this list loading each WAV file into an OpenAL Buffer. The process is straightforward. First
we need to generate a full pathname to the WAV file we’re trying to open. Our WAV files
are in the application’s Resources folder, so we create an FSSpec for the file with a simple
call to FSMakeFSSpec(). To convert this FSSpec to a text pathname we need to write a new
utility function:

Listing 10-16: Converting an FSSpec to a Full Pathname
void GetFullPathFromFSSpec(const FSSpec *spec, UInt8 *fullpath,
 int maxBufLen)
{
 OSErr iErr;
 FSRef theRef;

 iErr = FSpMakeFSRef(spec, &theRef);
 if (iErr != noErr)
 DoFatalAlert("\pFSpMakeFSRef failed");

 FSRefMakePath(&theRef, (UInt8 *) fullpath, maxBufLen);
}

The process of getting a path from an FSSpec is just a matter of first converting our FSSpec to
an FSRef with a call to FSpMakeFSRef(), and then we can get the path by calling
FSRefMakePath().

Chapter 10: Audio 118

We’ve got the full pathname of the WAV file, so we pass that text string to
alutLoadWAVFile():

 alutLoadWAVFile(fullPathname, &format, &data, &size, &freq);

We don’t need to know anything about the format of a WAV file since OpenAL automati-
cally takes care of everything. The format, data, size, and freq values that are returned
contain some information about the WAV file that will be needed to install it into an OpenAL
Buffer, but first we need to create the Buffer to hold all this information:

 alGenBuffers(1, &gSoundBuffers[i]);

This generates one Buffer object for us which can now be loaded with data from the WAV
file:

 alBufferData(gSoundBuffers[i], format, data, size, freq);

This copies all of the WAV file’s data into the Buffer, so the original WAV file is no longer
needed, therefore, we unload it:

 alutUnloadWAV(format, data, size, freq);

Playing a Sound
We’ve now got a Sound Buffer loaded with audio data, and we’re almost ready to try playing
it, but first we need to tell OpenAL about our Listener. Remember that the Listener is you, or
more accurately, it’s the camera location. Every time we update the OpenGL camera
information in our game, we also need to update the OpenAL Listener information:

Listing 10-17: Setting the Listener Information
void OAL_SetListenerInfo(OALPoint3D *coord, OALVector3D *aim,
 OALVector3D *up, OALVector3D *vector)
{
 OALOrientation orientation;

 /* SET ORIENTATION STRUCT */

 orientation.aim = *aim;
 orientation.up = *up;

 alListenerfv(AL_ORIENTATION, (ALfloat *)&orientation);

119

 /* SET POSITION & VELOCITY */

 alListenerfv(AL_POSITION, (ALfloat *)coord);
 alListenerfv(AL_VELOCITY, (ALfloat *)vector);
}

All OpenAL calls that affect the Listener are made through alListener() by passing in a
parameter constant followed by the value of that parameter. The most basic parameters are
the position, velocity, and orientation of the Listener. The position of the Listener is the
camera coordinate in our 3D world, the velocity is a vector representing the speed of the
camera in our 3D world, and the orientation is the camera’s look-at vector and up-vector.

When we call alListener() and pass in AL_ORIENTATION, OpenAL expects the input value
to be 6 consecutive floats. Those float’s make up two vectors: the first vector is the aim
or look-at vector of the Listener, and the second is the Listener’s up-vector. To make things
nice and clean we’ve defined an OALOrientation structure:

 typedef struct
 {
 OALVector3D aim;
 OALVector3D up;
 }OALOrientation;

OpenAL does not automatically calculate the Listener velocity from frame to frame. Instead,
we’ve got to manually calculate that in our camera update code with something like this:

 motion.x = gCameraCoord.x - gOldCameraCoord.x;
 motion.y = gCameraCoord.y - gOldCameraCoord.y;
 motion.z = gCameraCoord.z - gOldCameraCoord.z;

Motion values are used to calculate Doppler shift, so if you’re not planning on supporting
Doppler effects in your game then you really don’t need to worry about the Listener velocity.

Everything is now in place for us to play some sound, so let’s get to it:

Listing 10-18: Playing a Sound Effect
ALuint OAL_PlaySound3D(int bufferNum, OALPoint3D *coord,
 OALVector3D*vector, float pitch,
 float gain, Boolean loop)
{
 ALuint theSource;

 /* CREATE A SOUND SOURCE */

Chapter 10: Audio 120

 alGenSources(1, &theSource);

 if (alGetError() != AL_NO_ERROR)
 DoFatalAlert("\palGenSources failed");

 /* ASSIGN A SOUND TO THIS SOURCE */

 alSourcei(theSource, AL_BUFFER, gSoundBuffers[bufferNum]);

 /* SET SOURCE'S POSITION & VELOCITY */

 alSourcefv(theSource, AL_POSITION, (ALfloat *)coord);
 alSourcefv(theSource, AL_VELOCITY, (ALfloat *)vector);

 /* SET SOME OTHER PARAMETERS */

 // set distance where volume is 100%
 alSourcef(theSource, AL_REFERENCE_DISTANCE, 2.0);

 // set volume fall-off rate
 alSourcef(theSource, AL_ROLLOFF_FACTOR, .8);

 // set frequency and volume
 alSourcef (theSource, AL_PITCH, pitch);
 alSourcef (theSource, AL_GAIN, gain);

 // set looping flag
 alSourcei(theSource, AL_LOOPING, loop);

 /* PLAY THE SOUND */

 alSourcePlay(theSource);

 return(theSource);
}

The first step in playing a sound is to create the OpenAL sound Source:

 alGenSources(1, &theSource);

This allocates one new sound Source object for us (it’s kind of like allocating a new Sound
Channel with the Sound Manager). Then we need to assign a Buffer to this Source so that
OpenAL will know what sound we want this Source to play. Remember that the Buffer is
what contains our WAV file’s data, so by assigning it to the Source we’re telling the Source
to play this sound data.

121

As with the Listener, sound Sources also have a position and velocity value. The position is
used by OpenAL to calculate the volume of the sound, and the velocity is used in Doppler
shift calculations. The velocity is not needed if you’re not doing Doppler shift in your game.
All calls that modify Source parameters are done with the alSource() function, so the
position and velocity are set like this:

 alSourcefv(theSource, AL_POSITION, (ALfloat *)coord);
 alSourcefv(theSource, AL_VELOCITY, (ALfloat *)vector);

Next, we need to set some information about how we want our sound’s volume to decay with
distance from the Listener. In our OpenAL Context initialization function we told OpenAL
that we wanted to use the AL_INVERSE_DISTANCE_CLAMPED method, but we have the ability to
set specific parameters of this calculation on a per-Source basis:

 alSourcef(theSource, AL_REFERENCE_DISTANCE, 2.0);
 alSourcef(theSource, AL_ROLLOFF_FACTOR, .8);

The Reference Distance is the distance at which the sound is at 100% volume. If you move
the Listener farther from the Source it will start to decay in volume. The Roll-Off Factor
regulates this decay. The higher the Roll-Off Factor, the faster the volume will decay as the
Listener moves away from the Source. The lower the Roll-Off Factor, the less the volume
decays as the Listener moves away. Even though there is a precise mathematical formula
describing how these values work with the inverse distance calculation, the best way to make
things work in your game is to “play it by ear”. In other words, play with these values until
you get the desired volume in your game.

If you want to change the pitch or volume of a sound Source, just do this:

 alSourcef (theSource, AL_PITCH, pitch);
 alSourcef (theSource, AL_GAIN, gain);

The input values to these calls are multipliers. So, passing a pitch of 1.0 would not modify
the sound sample’s playback pitch at all, but passing 2.0 would double the frequency of the
pitch. The same goes for the Gain value. Passing 0.5 would cut the volume in half, while
passing 2.0 would double it.

OpenAL can automatically handle sounds that loop. Another alSource() call is all that’s
needed:

 alSourcei(theSource, AL_LOOPING, loop);

Chapter 10: Audio 122

Finally, we’ve got our Source configured how we want it, so, to make it start playing…

 alSourcePlay(theSource);

Doppler Shift
In the previous pages I’ve mentioned that OpenAL supports the Doppler shift effect, so now
I’ll talk a little more about it. For starters, what is Doppler shift? Simply put, it’s the effect
that causes a freight train to sound higher pitched as it approaches, and then lower pitched as
it moves away. Sound travels at a constant speed through the air, but if a sound emitting
object is traveling toward you, the sound waves get slightly compressed which causes the
frequency to become higher. As the object moves away, the sound waves get slightly
stretched, thus, the frequency becomes lower.

OpenGL can simulate this effect by turning it on:

 alDopplerFactor(1.0);
 alDopplerVelocity(1000);

The Doppler Factor value gives you a way to tweak the Doppler effect, making it more
exaggerated or less exaggerated. The value of 1.0 is the normal value, but higher numbers
will increase the effect by making the pitch of the sound raise higher and faster as objects
approach, and values below 1.0 will decrease the effect. The default value is 0.0 which tells
OpenAL not to do any Doppler shifting effects. Once you change this to a value over 0.0
Doppler calculations will kick in and you’ll get the effect with a small CPU cost.

The Doppler Velocity value is the speed of sound in your universe, so the value of 1000 tells
OpenAL that sound travels at 1000 units per second. You will probably need to tweak this
value quite a bit until you find the sweet spot where the Doppler shift sounds the best in your
game.

These Doppler parameters are global state settings, so once you set them it will affect all of
the sound Sources played on the current OpenAL context.

There is one major caveat to using Doppler shifts in your game’s sound engine: it isn’t
implemented in OpenAL 1.0. All of the Doppler function calls are there in OpenAL 1.0, but
the functions don’t actually work. What’s worse, they will generate an AL_INVALID_ENUM
error message even if you try to call them with legitimate values. This should be fixed in the
next major release of OpenAL.

123

The fact is that the problems with Doppler shifts in OpenAL are indicative of the 1.0 library
in general. If you just want to play simple, attenuated stereo effects it will work fine, but
honestly, you could do the same thing with a little extra coding using the Sound Manager.
Like I’ve said before, if you want to be on the cutting edge of audio on the Mac then dive
right into OpenAL, but if you’re more concerned about releasing a stable game that every
Mac owner can play then use the Sound Manager. When the next major release of OpenAL
is available it will likely be more robust and reliable, but the jury is still out.

125

Chapter 11: Simple Input

There are three different ways to read keyboard and mouse input on OS X, and I’ll be
covering the two easy methods here in this chapter. There is no simple way to read input
from a gamepad or joystick, so that topic is reserved for Chapter 12 which deals with the
dreaded HID Manager.

Let’s start with the keyboard. The Mac keyboard generally can only read three keys simulta-
neously, plus modifiers. That means if you hold down the A, B, C, and D keys, only three of
those four keys will register a key press. The modifier keys such as Shift, Option, Control,
and Command don’t count in that three-key limit. So, for example, you can press the Option,
E Y, P, and Shift keys all at the same time and they’ll all be read correctly. A common
mistake made by many Mac gamers is that they will try to assign non-modifier keys to all of
their game’s controls, and then they don’t understand why they can’t sometimes fire when
they’re moving around. You should assign modifier keys to game controls whenever
possible since they don’t count in that 3-key limit.

Here’s a better example of this going awry: Say you have player movement assigned to the
arrow keys and the player is moving diagonally by pressing the up and left arrow keys.
That’s two keys down. Now suppose you’ve got the duck key set to the D key and the fire
key set to F. Well, that’s four keys total. Something has got to give, so either the player
won’t be able to duck, or to shoot, or to move in the direction they wanted. The solution is to
assign the duck and shoot keys to modifier keys.

Reading the Keyboard with GetKeys()
If you’ve been programming the Mac for a long time then you probably know about the old
toolbox call GetKeys(). This function is the easiest way to read the keyboard on the Mac
because it returns a 128-bit value (the KeyMap) where each bit represents the state of a key on
the keyboard. By testing a specific bit of this value you can instantly determine if a key is
pressed or not.

Chapter 11: Simple Input 126

Listing 11-1:Reading the KeyMap with GetKeys()
KeyMap gKeyMap, gNewKeys, gOldKeys;

void UpdateKeyMap(void)
{
 GetKeys(gKeyMap);

 /* CALC WHICH KEYS ARE NEW THIS TIME */

 gNewKeys[0] = (gOldKeys[0] ^ gKeyMap[0]) & gKeyMap[0];
 gNewKeys[1] = (gOldKeys[1] ^ gKeyMap[1]) & gKeyMap[1];
 gNewKeys[2] = (gOldKeys[2] ^ gKeyMap[2]) & gKeyMap[2];
 gNewKeys[3] = (gOldKeys[3] ^ gKeyMap[3]) & gKeyMap[3];

 /* REMEMBER AS OLD MAP */

 gOldKeys[0] = gKeyMap[0];
 gOldKeys[1] = gKeyMap[1];
 gOldKeys[2] = gKeyMap[2];
 gOldKeys[3] = gKeyMap[3];
}

The type KeyMap is defined by the system headers as an array of four 32-bit long’s which
gives us 128 bits total. The current KeyMap is acquired by calling GetKeys():

 GetKeys(gKeyMap);

Next we determine which key bits are new this time by XOR’ing the old bit-field with the
new bit-field, and then AND’ing it with the new bit-field. Did I just confuse you? Let’s take
a closer look at that logic with this example:

 newBits = 000110010
 oldBits = 100010000

 new XOR old = 100100010 // these are the bits that changed
 AND with newBits = 000100010 // these are the new bits

This leaves 1’s in the bits of keys that are pressed now, but were not pressed previously.

With gNewKeys or gKeyMap we can easily test the value of any key. The only problem is that
we have to know which keys are assigned to which bits in this 128-bit KeyMap. There’s no
rhyme or reason to how this works since it’s not in any ASCII or alphabetical order. The
easiest way to deal with this is to just use a large list of constants that define the values of all
of the commonly used keys:

127

Listing 11-2:The KeyMap Bits
#define KEY_A 0x00
#define KEY_B 0x0b
#define KEY_C 0x08
#define KEY_D 0x02
#define KEY_E 0x0e
#define KEY_F 0x03
#define KEY_G 0x05
#define KEY_H 0x04
#define KEY_I 0x22
#define KEY_J 0x26
#define KEY_K 0x28
#define KEY_L 0x25
#define KEY_M 0x2e
#define KEY_N 0x2d
#define KEY_O 0x1f
#define KEY_P 0x23
#define KEY_Q 0x0c
#define KEY_R 0x0f
#define KEY_S 0x01
#define KEY_T 0x11
#define KEY_U 0x20
#define KEY_V 0x09
#define KEY_W 0x0d
#define KEY_X 0x07
#define KEY_Y 0x10
#define KEY_Z 0x06

#define KEY_1 0x12
#define KEY_2 0x13
#define KEY_3 0x14
#define KEY_4 0x15
#define KEY_5 0x17
#define KEY_6 0x16
#define KEY_7 0x1a
#define KEY_8 0x1c
#define KEY_9 0x19
#define KEY_0 0x1d

#define KEY_K0 0x52
#define KEY_K1 0x53
#define KEY_K2 0x54
#define KEY_K3 0x55
#define KEY_K4 0x56
#define KEY_K5 0x57
#define KEY_K6 0x58
#define KEY_K7 0x59
#define KEY_K8 0x5b
#define KEY_K9 0x5c

#define KEY_PERIOD 0x2f

Chapter 11: Simple Input 128

#define KEY_QMARK 0x2c
#define KEY_COMMA 0X2b

#define KEY_TAB 0x30
#define KEY_ESC 0x35
#define KEY_CAPSLOCK 0x39
#define KEY_APPLE 0x37
#define KEY_SPACE 0x31
#define KEY_OPTION 0x3a
#define KEY_CTRL 0x3b
#define KEY_UP 0x7e
#define KEY_DOWN 0x7d
#define KEY_LEFT 0x7b
#define KEY_RIGHT 0x7c
#define KEY_SHIFT 0x38
#define KEY_DELETE 0x33
#define KEY_RETURN 0x24
#define KEY_MINUS 0x1b
#define KEY_PLUS 0x18

#define KEY_F1 0x7a
#define KEY_F2 0x78
#define KEY_F3 0x63
#define KEY_F4 0x76
#define KEY_F5 0x60
#define KEY_F6 0x61
#define KEY_F7 0x62
#define KEY_F8 0x64
#define KEY_F9 0x65
#define KEY_F10 0x6d
#define KEY_F11 0x67
#define KEY_F12 0x6f
#define KEY_F13 0x69
#define KEY_F14 0x6b
#define KEY_F15 0x71

#define KEY_TILDE 0x32
#define KEY_HELP 0x72

This list of constants tells us which bit to test for each key. The A key is bit #0, the Tab key
is bit #0x30, and so on. So, to test our bits we’ll write a function like this:

Listing 11-3:Testing KeyMap Bits
Boolean GetKeyState(unsigned short key)
{
 unsigned char *keyMap = (unsigned char *)&gKeyMap;
 return ((keyMap[key >> 3] >> (key & 7)) & 1);
}

129

We get a char pointer to our gKeyMap value and then do some fancy shifting and masking on
it. The result is either a 0 or a 1 to indicate the bit was set.

That’s all there is to it, but there are a few issues to be aware of: Unfortunately, there is a bug
in OS X (up to version 10.3 as far as I know) in which GetKeys() will simply begin to fail,
and the only way to fix it is to reboot the computer. What will happen is that certain keys
will fail to set their corresponding bits in the KeyMap bit-field. This happens about 1 in 300
times a person plays any game that uses GetKeys(). Once the failure starts, it will affect any
and all applications that use GetKeys() until the machine is rebooted.

The other issue to be aware of is that international keyboards may alter some key mappings.
The letters, numbers, and other general keys always stay the same, but some keyboards
simply don’t have certain keys or do have others. For example, the tilde key doesn’t exist on
the German keyboard, while the French keyboard has additional keys for their fancy accented
letters. These issues are minor and manageable, so I’ve continued to use GetKeys() to some
degree in all of my games.

Reading the Keyboard with Carbon Events
Back in Chapter 9 we discussed how to write an Event handler to process a game’s menu bar.
Well, that same Event hander can be modified to also handle keyboard events. Instead of
only looking for kEventCommandProcess events, we’ll also look for keyboard events:

Listing 11-4:Adding Keyboard Events to our Event Handler
void InitMyCommandEventHandler(void)
{
 OSStatus iErr;
 EventTypeSpec events[4] =
{
 kEventClassCommand, kEventCommandProcess,
 kEventClassKeyboard, kEventRawKeyDown,
 kEventClassKeyboard, kEventRawKeyUp,
 kEventClassKeyboard, kEventRawKeyModifiersChanged
};

 /***/
 /* LOAD AND SET MENU BAR FROM OUR NIB FILE */
 /***/

 iErr = SetMenuBarFromNib(gNibs, CFSTR("MainMenu"));
 if (iErr != noErr)
 DoFatalAlert("\pSetMenuBarFromNib failed!");

Chapter 11: Simple Input 130

 /************************/
 /* CREATE EVENT HANDLER */
 /************************/

 gMyEventHandlerUPP = NewEventHandlerUPP(MyEventHandler);

 InstallEventHandler(GetApplicationEventTarget(), gMyEventHandlerUPP,
 4, events, nil, &gMyEventHandlerRef);
}

This new version of InitMyEventHandler() looks basically the same as that from Listing 9-
4. The only difference is that we’ve added more event types to look for:

kEventRawKeyDown
These events occur whenever a key is pressed.

kEventRawKeyUp
These events occur whenever a key is released.

kEventRawKeyModifiersChanged
These events occur when a modifier key is pressed or released.

Now we need to update our event handler function to process these keyboard events as they
come in:

Listing 11-5:Handling Keyboard Events
static pascal OSStatus MyEventHandler(EventHandlerCallRef eventhandler,
 EventRef event, void *userdata)
{
 OSStatus result = eventNotHandledErr;
 HICommand command;
 UInt32 eventClass, eventKind;
 char charCode;

 /* GET EVENT CLASS & KIND */

 eventClass = GetEventClass(event);
 eventKind = GetEventKind(event);

 switch (eventClass)
 {
 /*************************/
 /* HANDLE COMMAND EVENTS */
 /*************************/

131

 case kEventClassCommand:

 /* EXTRACT COMMAND INFO FROM EVENT */

 GetEventParameter(event, kEventParamDirectObject,
 typeHICommand, nil,
 sizeof(HICommand), nil, &command);

 /* HANDLE THE COMMAND */

 switch (command.commandID)
 {
 case 'quit': // Quit menu item
 gQuitApplication = true;
 result = noErr;
 break;
 }
 break;

 /**************************/
 /* HANDLE KEYBOARD EVENTS */
 /**************************/

 case kEventClassKeyboard:

 switch(eventKind)
 {
 case kEventRawKeyDown:
 GetEventParameter(event,
 kEventParamKeyMacCharCodes,
 typeChar, nil,
 sizeof(charCode), nil,
 &charCode);
 gKeyState[charCode] = true;
 break;

 case kEventRawKeyUp:
 GetEventParameter(event,
 kEventParamKeyMacCharCodes,
 typeChar, nil,
 sizeof(charCode), nil,
 &charCode);
 gKeyState[charCode] = false;
 break;

 case kEventRawKeyModifiersChanged:
 GetEventParameter(event,
 kEventParamKeyModifiers,
 typeUInt32, nil,
 sizeof(gModifiers), nil,
 &gModifiers);

Chapter 11: Simple Input 132

 break;
 }
 break;
 }

 return(result);
}

Half of this function looks the same as it did in Chapter 9, but we’ve added a bunch of new
code to handle our new keyboard events. First, we need to determine what kind of event our
handler has received:

 eventClass = GetEventClass(event);
 eventKind = GetEventKind(event);

The event class and event kind tell us exactly what event occurred. When a key-down or
key-up event occurs, we need to find out which key was pressed:

 GetEventParameter(event, kEventParamKeyMacCharCodes, typeChar, nil,
 sizeof(charCode), nil, &charCode);

The charCode returned is the ASCII character value of the key. So if the G key was pressed,
the charCode will be “G”. To track which keys are pressed and not pressed, we have an
array of 256 Boolean flags. The ASCII character is an index into this array.

The modifier keys are handled separately by the kEventRawKeyModifiersChanged event, and
the value of all of the modifier keys is obtained with another GetEventParameter() call:

 GetEventParameter(event, kEventParamKeyModifiers, typeUInt32, nil,
 sizeof(gModifiers), nil, &gModifiers);

The gModifiers variable will contain a bit-mask where each bit represents a modifier key;
similar to how the KeyMap bits worked earlier. To test the value of a modifier key, there is a
list of constants in the system header Events.h that we can mask against:

 cmdKeyBit
 shiftKeyBit
 alphaLockBit
 optionKeyBit
 controlKeyBit
 rightShiftKeyBit
 rightOptionKeyBit
 rightControlKeyBit

So, for example, if we wanted to see if the Option key was pressed or not, we do this:

133

 if (gModifiers & optionKeyBit)
 printf(“option key is pressed”);
 else
 printf(“option key is not pressed”);

This method of reading the keyboard is quite common in Mac games, but as you can see it is
a lot more work than just using GetKeys(). The benefit, however, is that you get the actual
ASCII value of a key which is nice for things like High Scores screens where the user is
actually typing something.

Reading the Mouse
If you only need to know the window coordinates and the status of the button on the mouse,
then life is pretty easy:

Listing 11-6:Reading the Mouse Coordinates
void GetMouseScreenCoord(int *x, int *y)
{
 Point pt;
 GrafPtr oldPort;

 /* FULL SCREEN MODE */

 if (!gPlayInWindow)
 {
 GetMouse(&pt);

 *x = pt.h;
 *y = pt.v;
 }

 /* WINDOWED MODE */

 else
 {
 GetPort(&oldPort);
 SetPort(gGameWindowGrafPtr);

 GetMouse(&pt);

 SetPort(oldPort);

 *x = pt.h;
 *y = pt.v;

Chapter 11: Simple Input 134

 }
}

The call GetMouse() will return the mouse coordinates within the current GrafPort. If we’re
in full-screen mode then we just call this and we’re done, but if we’re playing in a window
then we need a few more lines to get the window-relative coordinates. This is done by setting
the port to our window before calling GetMouse().

Determining the status of the mouse button is as simple as this:

 mouseButtonDown = Button();

There is other mouse data that you may want to receive such as mouse delta values, or
additional buttons and scroll wheels on complex mice devices. All desktop Mac’s ship with
that lousy one-button mouse, but there are a lot of people out there who toss that mouse as
soon as they unpack their new computer. There are much better mice out there that have
scroll wheels and additional buttons. If you’re not already using one of those mice, I highly
recommend switching to one. Reading the delta values, scroll wheel values, and additional
buttons is simply a matter of adding more Carbon Events to our event handler:

Listing 11-7:Including Mouse Events in the Event Handler
EventTypeSpec events[9] =
{
 kEventClassCommand, kEventCommandProcess,
 kEventClassKeyboard, kEventRawKeyDown,
 kEventClassKeyboard, kEventRawKeyUp,
 kEventClassKeyboard, kEventRawKeyModifiersChanged};

 kEventClassMouse, kEventMouseMoved,
 kEventClassMouse, kEventMouseDragged,
 kEventClassMouse, kEventMouseUp,
 kEventClassMouse, kEventMouseDown,
 kEventClassMouse, kEventMouseWheelMoved
};

These five new event types let us find out all sorts of great information about the mouse:

kEventMouseMoved
This event occurs whenever the mouse moves.

kEventMouseDragged
This event occurs whenever the mouse moves while the button is held down.

135

kEventMouseDown
This event occurs when any button on the mouse is pressed.

kEventMouseUp
This event occurs when any button on the mouse is released.

kEventMouseWheelMoved
This event occurs when the scroll wheel on the mouse is spun.

We need to add some code to MyEventHandler() to take care of processing these mouse
events:

Listing 11-8:Processing Mouse Events
 case kEventClassMouse:
 switch(eventKind)
 {
 /* MOUSE MOVED */

 case kEventMouseMoved:
 case kEventMouseDragged:

 // get mouse delta
 GetEventParameter(event,
 kEventParamMouseDelta,
 typeQDPoint, nil,
 sizeof(mouseDelta), nil,
 &mouseDelta);

 gMouseDeltaX = mouseDelta.h;
 gMouseDeltaY = mouseDelta.v;

 // get mouse coord
 GetEventParameter(event,
 kEventParamMouseLocation,
 typeQDPoint, nil,
 sizeof(mouseCoord), nil,
 &mouseCoord);

 gMouseCoordX = mouseCoord.h;
 gMouseCoordY = mouseCoord.v;
 break;

 /* MOUSE WHEEL MOVED */

 case kEventMouseWheelMoved:

 GetEventParameter(event,
 kEventParamMouseWheelDelta,

Chapter 11: Simple Input 136

 typeSInt32, nil,
 sizeof(gMouseWheelDelta), nil,
 &gMouseWheelDelta);
 break;

 /* MOUSE BUTTON DOWN */

 case kEventMouseDown:
 // which button was pressed?

 GetEventParameter(event,
 kEventParamMouseButton,
 typeMouseButton,
 nil ,sizeof(whichButton), nil,
 &whichButton);

 switch(whichButton)
 {
 // left button?
 case kEventMouseButtonPrimary:
 gMouseLeftButtonDown = true;
 break;

 // right button?
 case kEventMouseButtonSecondary:
 gMouseRightButtonDown = true;
 break;

 // middle button?
 case kEventMouseButtonTertiary:
 gMouseMiddleButtonDown = true;
 break;
 }
 break;

 /* MOUSE BUTTON UP */

 case kEventMouseUp:
 // which button was released?
 GetEventParameter(event,
 kEventParamMouseButton,
 typeMouseButton,
 nil ,sizeof(whichButton), nil,
 &whichButton);

 switch(whichButton)
 {
 // left button?
 case kEventMouseButtonPrimary:
 gMouseLeftButtonDown = false;

137

 break;

 // right button?
 case kEventMouseButtonSecondary:
 gMouseRightButtonDown = false;
 break;

 // middle button?
 case kEventMouseButtonTertiary:
 gMouseMiddleButtonDown = false;
 break;
 }
 break;
 }
 break;

The function GetEventParameter() is used extensively here. When there is a mouse moved
or dragged event we call GetEventParameter() to get the mouse deltas and coordinates.
The same goes for getting the scroll wheel delta.

Technically, OS X can handle mice with up to 32 buttons, but most standard mice have
between one and three buttons, so the CarbonEvents.h header file defines constants for the
first three buttons:

 kEventMouseButtonPrimary = 1,
 kEventMouseButtonSecondary = 2,
 kEventMouseButtonTertiary = 3

We use these constants to determine which button generated the mouse up or mouse down
event, however, you can also just pass in the numbers 1 through 32 to specify a button. How
the buttons from 4 to 32 map to any particular mouse is not defined, but for the first three
buttons the primary button is always the left button, the secondary button is always the right
one, and the tertiary is always the middle.

Some really funky mice may have more than one scroll wheel, so if you want to support this
you can find out which scroll wheel triggered the event with another call to
GetEventParameter():

 EventMouseWheelAxis axis;

 GetEventParameter(event, kEventParamMouseWheelAxis,
 typeMouseWheelAxis, nil, sizeof(axis),
 nil, &axis);

Two axis constants are defined in CarbonEvents.h:

Chapter 11: Simple Input 138

 kEventMouseWheelAxisX = 0,
 kEventMouseWheelAxisY = 1

It is important to mention that the delta values returned for the mouse and scroll wheel
movement are only relative to the last time that a delta event occurred. You’re responsible
for figuring out what any given delta value really means to your application. Faster machines
may be able to detect mouse movement faster, thus, there will be more kEventMouseMoved
events, and so the delta reported at each event will be smaller. Also, it is very important to
understand that your global delta variables will never go to zero because they’ll always hold
the delta value from the most recent event. If the user stops moving the mouse, no event will
be generated, so, the mouse delta variables will still have whatever value was in it previously.
The best way to handle this is to process your delta values from inside the event handler
function. In other words, if you get a kEventMouseWheelMoved event, then read the delta
event and immediately process it. If the scroll wheel zooms your camera in your game, then
do that zooming now -don’t even bother saving that delta in a global variable.

The sample project “Simple Input.xcode” contains all of this sample code and displays mouse
deltas and scroll wheel deltas on the screen.

139

Chapter 12: Input with the HID Manager

Welcome to the special corner in Hell that’s been reserved for input devices on OS X.
Unfortunately, this is the one part of OS X which has always been a disaster for game
programmers, so prepare yourself, it’s going to get ugly.

The Good, the Bad, and the HID Manager
I’ve mentioned before that in the days of Mac OS 8 and 9 there was something called Game
Sprockets that was a collection of libraries for doing game related stuff. One of these
Sprockets was Input Sprocket. Input Sprocket was a wonderful thing because it made it
incredibly easy for a game programmer to support just about any mouse, keyboard, gamepad
or joystick out there, and it was 100% reliable. It also had a standard configuration dialog for
assigning the controls of keyboards, mice, gamepads, joysticks, etc. Every game had the
same dialog, so users immediately understood what to do to set up their devices. The only
real issue that anyone ever had with Input Sprocket was that this configuration dialog was
rather ugly. Functional, but ugly:

Figure 12-1: The ugly yet functional Input Sprocket Configuration Dialog

So, rather than just fixing the “ugly” issue with Input Sprocket and moving it over to OS X,
Apple decided to kill the technology altogether. For a few years this left us with basically no
way of doing input on OS X. The answer to Input Sprocket was supposed to be this new
thing called the HID Manager (HID is an acronym for “Human Interface Device”). Unfortu-

Chapter 12: Input with the HID Manager 140

nately, it wasn’t until Mac OS 10.2 that the HID Manager became usable, but even then, it
was so loaded with bugs that using it was difficult.

Saying that using the HID Manager is difficult is something of an understatement because
even to this day it’s still a nightmare for both game developers and users. The HID Manager
constantly loses devices, and gives incorrect information about devices. In some cases this
misinformation is the fault of the device itself, but Input Sprocket somehow always handled
these devices 100% correctly. The HID Manager’s success rate is probably only around
80%. For example, I’ve yet to find a gamepad who’s D-Pad gets correctly recognized by the
HID Manager as a D-Pad, and I’ve only found one type of joystick who’s hat switch gets
correctly identified as a hat switch. The bottom line is that the data you’ll get about devices
from the HID Manager is extremely unreliable, but it’s all we’ve got to work with on OS X.
This is the main reason why so many games on OS X simply don’t support input devices. It’s
just not worth the trouble, and it generates a huge number of tech support calls from users
who cannot get their gamepads to work as they should. If you choose to support input
devices on OS X, you can expect to be flooded with emails like this one that I coincidentally
just received as I was writing this chapter:

Dear President of Pangea Software, Inc.:

 I am having a problem with my iShock II Gamepad when I
play Bugdom 2 on Mac OS X. All of the action buttons (A, B, C, D)
make Skip jump. The D-Pad button control Skip (I use them for
camera controls). I checked my gamepad configuration dialog
but the controls are just the way I set them. The controls worked
fine on the day I got the gamepad. The same thing happened
with a different game on my computer. I think it is a bug on my
computer. It can't be the gamepad because I recently got it. Is
there any way to fix this?

Sincerely,
Seth

Luckily, I’ve been using the HID Manager for quite some time now, and I’ve discovered
ways to work around many of these bugs with code hacks and physical coercion. For
example, I know that sometimes just plugging a device into a different USB port can fix
problems like the one Seth was seeing with his gamepad. Other times just rebooting makes
devices work again. The file Input.c in the “HID Manager Input.xcode” project contains an
entire input system using the HID Manager, and it’s whopping 3000 lines of code with lots of
special cases to handle the various bugs in the HID Manager. The HID Manager is a low-

141

level API, so, we’re essentially writing our own version of Input Sprocket from the ground
up.

Some HID Manager Terminology
Before we get to any code, we need to go over the definitions of some terms that the HID
Manager uses:

Device
A Device is any HID compliant input device such as a gamepad, keyboard, mouse, joystick,
steering wheel, etc.

Element
An Element is generally any control on the Device which causes input. This can be a key on
a keyboard, the x-axis of a joystick, the button on a gamepad, etc. These types of Elements
are represented by the following constants:

 kIOHIDElementTypeInput_Misc
 kIOHIDElementTypeInput_Button
 kIOHIDElementTypeInput_Axis

Elements can also be groups or collections of other elements. These types of Elements,
kIOHIDElementTypeCollection, don’t actually have any physical control associated with
them, but rather they’re just a logical grouping of other controls. This makes things rather
confusing when trying to get the list of actual control Elements on a Device as you’ll see
later.

Usage Page
The Usage Page of a Device is just a weird way to indicate the genre or class of a Device.
This is an area where the HID Manager is poorly designed because every gamepad and
joystick that I’ve ever plugged in has come up with the Usage Page of type
kHIDPage_GenericDesktop. This happens despite the fact that there are other Usage Page
types defined in IOHIDUsageTables.h that would seem to be much more game-device-
related, including one specifically called kHIDPage_Game:

 kHIDPage_Simulation
 kHIDPage_VR
 kHIDPage_Sport
 kHIDPage_Game
 kHIDPage_Arcade

Chapter 12: Input with the HID Manager 142

Usage
The Usage specifies a sub-type of the Usage Page. There is a huge list of Generic Desktop
Usage constants in IOHIDUsageTables.h, but it’s the following constants that we’ll primarily
be using to identify our gamepads, joysticks and such:

 kHIDUsage_GD_Mouse
 kHIDUsage_GD_Joystick
 kHIDUsage_GD_GamePad
 kHIDUsage_GD_Keyboard
 kHIDUsage_GD_MultiAxisController

Getting the List of HID Devices
The first thing we want to do is get a list of all eligible HID Devices. In our game engine that
we’re building, we only care about keyboard, gamepad, and joystick devices, so we’ve got to
write an initialization function that creates this list:

Listing 12-1:The Function to Get a List of HID Devices
mach_port_t gHID_MasterPort;

void InitMyHIDManagerStuff(void)
{
 short i;
 io_iterator_t hidObjectIterator = nil;
 IOReturn ioReturnValue = kIOReturnSuccess;

 /*******************************/
 /* BUILD A LIST OF HID DEVICES */
 /*******************************/

 gNumHIDDevices = 0;

 /* GET A PORT TO INIT COMMUNICATION WITH I/O KIT */

 ioReturnValue = IOMasterPort(bootstrap_port, &gHID_MasterPort);
 if (ioReturnValue != kIOReturnSuccess)
 DoFatalAlert("\pIOMasterPort failed!");

 /* CREATE AN ITERATION LIST OF HID DEVICES */

 FindHIDDevices(gHID_MasterPort, &hidObjectIterator);
 if (hidObjectIterator == nil)

143

 DoFatalAlert("\pMyInitHID: no HID Devices found!");

 /* PARSE ALL THE HID DEVICES IN THE ITERATION LIST */
 //
 // This builds our master list of desired HID devices and
 // all associated elements.
 //

 ParseAllHIDDevices(hidObjectIterator);

 /* DISPOSE OF THE ITERATION LIST */

 IOObjectRelease(hidObjectIterator);

 /* SET THE DEFAULT CONTROL SETTINGS */

 ResetAllDefaultControls();
}

This function starts off by creating a connection to the I/O Kit in the Mac OS X:

 IOMasterPort(bootstrap_port, &gHID_MasterPort);

The gHID_MasterPort reference is then passed to this function:

Listing 12-2:Generating the Device List
void FindHIDDevices(mach_port_t masterPort,
 io_iterator_t *hidObjectIterator)
{
 CFMutableDictionaryRef hidMatchDictionary;
 IOReturn ioReturnValue = kIOReturnSuccess;

 /* CREATE A DICTIONARY OF HID DEVICES */

 hidMatchDictionary = IOServiceMatching(kIOHIDDeviceKey);

 /* FILL THE DICTIONARY WITH THE HID DEVICES */

 ioReturnValue = IOServiceGetMatchingServices(masterPort,
 hidMatchDictionary, hidObjectIterator);

 /* VERIFY THAT WE FOUND ANYTHING */

Chapter 12: Input with the HID Manager 144

 if ((ioReturnValue != kIOReturnSuccess) ||
 (*hidObjectIterator == nil))
 {
 DoFatalAlert("\pFindHIDDevices: No matching HID devices
 found!");
 }
}

The function IOServiceMatching() essentially creates a blank CFDictionary to contain
HID Device references:

 hidMatchDictionary = IOServiceMatching(kIOHIDDeviceKey);

Next, we fill that Dictionary with the list of HID devices:

 ioReturnValue = IOServiceGetMatchingServices(masterPort,
 hidMatchDictionary, hidObjectIterator);

You’ll notice that we check both the ioReturnValue and hidObjectIterator to make sure
we actually got something. You’d be amazed how often this fails because the HID Manager
will suddenly stop functioning, and won’t find your mouse or keyboard or anything else
plugged in. If this happens, the only solution is to reboot your computer. I get customers
emailing me with support questions about this all the time, so when it happens I just tell them
that everything should work after a reboot. However, rebooting does not always fix the
problem. Sometimes you have to physically unplug the keyboard, and plug it into a different
USB port before the device will be seen again. A customer of mine had this happen just the
other day, and he was lucky because the USB swapping worked for him. But there are times
when rebooting and swapping USB ports still doesn’t work. I have yet to find a solution to
this rare case, but users who experience this have reported that later in the day or the next
day, the devices will start to be seen by the HID again.

Ok, we’ve now got the master list of all HID devices available on this computer, so now we
need to scan this list, and keep only the Devices that we want our game to use:

Listing 12-3:Parsing the Device List
void ParseAllHIDDevices(io_iterator_t hidObjectIterator)
{
 io_object_t hidDevice;
 IOReturn ioReturnValue;
 kern_return_t result;
 CFMutableDictionaryRef properties;
 CFTypeRef object;
 long usagePage, usage, locationID;
 Boolean allowThisDevice;

145

 /***/
 /* ITERATE THRU ALL OF THE HID OBJECTS IN THE LIST */
 /***/

 /* GET THE HID DEVICE IN THE WHILE LOOP */

 while ((hidDevice = IOIteratorNext(hidObjectIterator)))
 {
 /* CONVERT THE DEVICES PROPERTIES INTO A CF DICTIONARY */

 result = IORegistryEntryCreateCFProperties(hidDevice,
 &properties,
 kCFAllocatorDefault,
 kNilOptions);

 if ((result != KERN_SUCCESS) || (properties == nil))
 continue;

 /* GET THE “USAGE PAGE” OF THIS HID DEVICE */

 object = CFDictionaryGetValue(properties,
 CFSTR(kIOHIDPrimaryUsagePageKey));
 if (!object)
 {
 // on 10.3 this is probably a legit error, but on 10.2 it's
 // probably the keyboard

 if (gPantherOrBetter)
 goto error;
 }
 else
 {
 if (!CFNumberGetValue(object, kCFNumberLongType, &usagePage))
 {
 if (gPantherOrBetter)
 goto error;
 else
 usagePage = kHIDPage_GenericDesktop;
 }
 }

 /* GET THE “USAGE” OF THIS DEVICE */

 object = CFDictionaryGetValue(properties,
 CFSTR(kIOHIDPrimaryUsageKey));
 if (!object)
 {
 if (gPantherOrBetter)
 goto error;
 }

Chapter 12: Input with the HID Manager 146

 else
 {
 if (!CFNumberGetValue(object, kCFNumberLongType, &usage))
 {
 if (gPantherOrBetter)
 goto error;
 else
 usage = kHIDUsage_GD_Keyboard;
 }
 }

 /* GET LOCATION ID OF THE USB DEVICE */

 object = CFDictionaryGetValue(properties,
 CFSTR(kIOHIDLocationIDKey));
 if (!object)
 locationID = 0xdeadbeef;
 else
 {
 if (!CFNumberGetValue(object, kCFNumberLongType, &locationID))
 {
 locationID = 0xdeadbeef;
 }
 }

 /***/
 /* SEE IF THIS IS A DEVICE WE'RE INTERESTED IN */
 /***/

 allowThisDevice = false; // assume we don't want this device

 switch(usagePage)
 {
 case kHIDPage_GenericDesktop:
 switch(usage)
 {
 case kHIDUsage_GD_Joystick:
 case kHIDUsage_GD_GamePad:
 case kHIDUsage_GD_Keyboard:
 allowThisDevice = true;
 break;
 }
 break;
 }

 /***********************************/
 /* ADD THIS HID DEVICE TO OUR LIST */
 /***********************************/

 if (allowThisDevice)
 {

147

 AddHIDDeviceToList(hidDevice, properties, usagePage,
 usage, locationID);
 }

 /* RELEASE THE HID OBJECT */
error:
 CFRelease(properties); // free the CF dictionary
 IOObjectRelease(hidDevice);
 }
}

This function is riddled with error checking and hacks to handle the bugs in older versions of
the HID Manager on OS 10.2.8 and earlier. You’ll notice that we check the variable
gPantherOrBetter quite often. This variable is set in our application’s initialization func-
tion, and it is set to true if we’re running on Mac OS 10.3 or later. This is because many
HID Manager bugs were fixed in 10.3, but we still have to work around these bugs in 10.2.

To scan through our list of Devices we use the IOIteratorNext() function which returns a
device reference in the form of an io_object_t. With this device reference we can easily
generate a Core Foundation Dictionary that contains a list of all of the parameters describing
the device:

 IORegistryEntryCreateCFProperties(hidDevice,
 &properties, kCFAllocatorDefault, kNilOptions);

It’s really easy to extract all sorts of information about each device by making calls to
CFDictionaryGetValue(). The first thing we want to do is get the Usage Page of this
device:

 object = CFDictionaryGetValue(properties,
 CFSTR(kIOHIDPrimaryUsagePageKey));

The value kIOHIDPrimaryUsagePageKey is defined in IOHIDKeys.h along with lots of other
“keys” that you can use to extract information:

 kIOHIDTransportKey
 kIOHIDVendorIDKey
 kIOHIDVendorIDSourceKey
 kIOHIDProductIDKey
 kIOHIDVersionNumberKey
 kIOHIDManufacturerKey
 kIOHIDProductKey
 kIOHIDSerialNumberKey
 kIOHIDLocationIDKey
 kIOHIDDeviceUsageKey

Chapter 12: Input with the HID Manager 148

 kIOHIDDeviceUsagePageKey
 kIOHIDDeviceUsagePairsKey
 kIOHIDPrimaryUsageKey
 kIOHIDPrimaryUsagePageKey
 kIOHIDMaxInputReportSizeKey
 kIOHIDMaxOutputReportSizeKey
 kIOHIDMaxFeatureReportSizeKey

If the value returned is nil then that means that CFDictionaryGetValue() was unable to
find that key anywhere in the device’s Dictionary. Unfortunately, there was a major bug in
the version of the HID Manager prior to Mac OS 10.3 where the keyboard device might be
missing all or some of its standard key values, including the critical information such as the
Usage Page and Usage – you know, that little thing that helps us determine what the device
actually is.

If we’re on Mac OS 10.2 and we get an error from one of these CFDictionaryGetValue()
calls, it’s safe to guess that this device is actually a keyboard. There’s no way to know for
sure, but it probably is. So, when an error occurs we just fake it with a hack to force the
Usage Page and Usage to kHIDPage_GenericDesktop and kHIDUsage_GD_Keyboard respec-
tively.

Another piece of information that we extract from the Device is its Location ID via
kIOHIDLocationIDKey. The Location ID uniquely identifies this device’s location on the
USB chain. The reason this value is important is because the user might have two or more
totally identical devices plugged in, and we need a way to differentiate between them. For
example, I have two identical Saitek gamepads plugged in. They both have 100% identical
information such as Page Usage, Page, Device Name, Manufacturer Name, etc. The only
way to tell them apart is by their location ID. This is useful when saving and restoring user
settings for the different devices.

Once we’ve gotten the Usage Page and Usage values, we check them to see if they’re what
we’re looking for. In our engine we’re only looking for Generic Desktop devices which are
keyboards, gamepads, or joysticks. If the device meets our criteria then we add it to our list
of devices that we’re interested in. Otherwise, we skip it.

Listing 12-4:Add a Device to our List
static void AddHIDDeviceToList(io_object_t hidDevice,
 CFMutableDictionaryRef properties,
 long usagePage,
 long usage, long locationID)
{
 CFTypeRef object;

149

 const char *deviceName;
 const char defaultName[] = "Unnamed Device";
 short d;
 long vendorID, productID;

 if (gNumHIDDevices >= MAX_HID_DEVICES)
 return;

 d = gNumHIDDevices;

 /*********************************/
 /* GATHER SOME INFO THAT WE NEED */
 /*********************************/

 /* GET PRODUCT NAME */

 object = CFDictionaryGetValue(properties, CFSTR(kIOHIDProductKey));
 if (!object)
 deviceName = defaultName;
 else
 deviceName = GetCFStringFromObject(object);

 /* GET VENDOR & PRODUCT ID'S */

 object = CFDictionaryGetValue(properties, CFSTR(kIOHIDVendorIDKey));
 if (!object)
 vendorID = d; // set some bogus vendorID
 else
 if (!CFNumberGetValue(object, kCFNumberLongType, &vendorID))
 vendorID = d; // set some bogus vendorID

 object = CFDictionaryGetValue(properties, CFSTR(kIOHIDProductIDKey));
 if (!object)
 productID = d; // set some bogus product ID
 else
 if (!CFNumberGetValue(object, kCFNumberLongType, &productID))
 productID = d; // set some bogus product ID

 /***********************/
 /* SAVE INFO INTO LIST */
 /***********************/

 gHIDDeviceList[d].usagePage = usagePage; // keep usage Page
 gHIDDeviceList[d].usage = usage; // keep usage
 gHIDDeviceList[d].vendorID = vendorID; // keep vendor ID
 gHIDDeviceList[d].productID = productID; // keep product ID
 gHIDDeviceList[d].locationID = locationID; // keep location ID
 gHIDDeviceList[d].numElements = 0; // no elements yet

Chapter 12: Input with the HID Manager 150

 strncpy(gHIDDeviceList[d].deviceName, // copy device name string
 deviceName,
 DEVICE_NAME_MAX_LENGTH);

 /* ONLY KEYBOARDS ARE ACTIVE BY DEFAULT */

 if ((usagePage == kHIDPage_GenericDesktop) &&
 (usage == kHIDUsage_GD_Keyboard))
 gHIDDeviceList[d].isActive = true;
 else
 gHIDDeviceList[d].isActive = false;

 /****************************/
 /* RECURSIVELY ADD ELEMENTS */
 /****************************/

 RecurseDictionaryElement(properties, CFSTR(kIOHIDElementKey));

 /* OPEN AN INTERFACE TO THIS DEVICE */

 MyOpenHIDDeviceInterface(hidDevice,
 &gHIDDeviceList[d].hidDeviceInterface);

 gNumHIDDevices++;
}

Once again, this function is loaded with hacks to work around the various bugs in the HID
Manager. The function starts out by getting the name of the device:

 object = CFDictionaryGetValue(properties, CFSTR(kIOHIDProductKey));

Unfortunately, there will be random times when the name string simply isn’t in the device’s
property list. It’s rare, but it does happen. Also, some older USB devices don’t have product
names in their ROM’s, so this will also fail in those cases. Such a device is the Ariston Ares
joystick. So, if we do get an error trying to extract the name string from the device, then we
just set it to some default value like “Unnamed Device.”

Next, we get some additional information about the device that is useful for identifying it
when we save and restore the user’s configuration settings. However, these values will
randomly fail, especially in older versions of the HID Manager. The Vendor ID and Product
ID values seem to be especially prone to failure if the device happens to a PowerBook
keyboard. So, we check for these failures, and if one occurs we just set the ID’s to some
arbitrary value.

151

After saving all of the device’s information into our gHIDDeviceList array, the next step is
to recursively scan the device for all of its control Elements by calling our
RecurseDictionaryElements() function. We’ll discuss this in a moment, but for now lets
look at the next line of code from Listing 12-4:

 CreateHIDDeviceInterface(hidDevice,
 &gHIDDeviceList[d].hidDeviceInterface);

Creating an interface to the device is a fancy way of saying that we’re simply connecting to
that device, thus, making it available to our application. In more complex terms, the device
interface provides jump pointers to functions that your application can use to access it.

Listing 12-5:Creating and Opening an Interface to the Device
static void MyOpenHIDDeviceInterface(io_object_t hidDevice,
 IOHIDDeviceInterface ***hidDeviceInterface)
{
 IOCFPlugInInterface **plugInInterface;
 HRESULT plugInResult;
 SInt32 score = 0;
 IOReturn ioReturnValue;

 /* CREATE AN INTERMEDIATE INTERFACE TO THE DEVICE */

 ioReturnValue = IOCreatePlugInInterfaceForService(hidDevice,
 kIOHIDDeviceUserClientTypeID,
 kIOCFPlugInInterfaceID,
 &plugInInterface, &score);
 if (ioReturnValue != kIOReturnSuccess)
 DoFatalAlert("\pIOCreatePlugInInterfaceForService failed!");

 /* QUERY THE INTERMEDIATE INTERFACE TO GET THE ACTUAL INTERFACE */

 plugInResult = (*plugInInterface)->QueryInterface(plugInInterface,
 CFUUIDGetUUIDBytes(kIOHIDDeviceInterfaceID),
 (LPVOID)hidDeviceInterface);
 if (plugInResult != S_OK)
 DoFatalAlert("\pCouldn’t create HID class device interface");

 /* RELEASE THE INTERMEDIATE INTERFACE */

 (*plugInInterface)->Release(plugInInterface);

 /* OPEN THE INTERFACE */

Chapter 12: Input with the HID Manager 152

 ioReturnValue = (**hidDeviceInterface)->open(*hidDeviceInterface, 0);
 if (ioReturnValue != kIOReturnSuccess)
 DoFatalAlert("\pCouldn’t open device interface");
}

This function is perhaps the most cryptic function in our entire input engine, and frankly it’s
not important that you understand what it’s doing. Just know that it’s opening up a connec-
tion to the Device so that we can read data from it later.

Getting a Device’s Elements
Ok, back to getting our Device’s Element list. The database of Elements in a Device is more
complicated than it probably needs to be. It’s not just a simple list of Elements, no, that
would be too easy. Instead it’s a series of groups of Elements in a hierarchy of data that
includes arrays of sub-elements. In other words… it’s a mess. The diagram below shows a
very basic example of such a hierarchy:

Figure 12-2: Hierarchy of a fictional HID Device’s Elements

To extract a list of elements from the device we’ve got to parse through it recursively:

153

Listing 12-6:Recursing Through a Device’s Elements
void RecurseDictionaryElement(CFDictionaryRef dictionary,
 CFStringRef key)
{
 CFTypeRef object;
 CFTypeID type;

 // get the desired key value from the dictionary

 object = CFDictionaryGetValue(dictionary, key);
 if (object)
 {
 type = CFGetTypeID(object); // get the type of element

 if (type == CFArrayGetTypeID()) // it’s an array of elements
 MyCFArrayParse(object);
 else
 if (type == CFDictionaryGetTypeID()) // it’s a sub-dictionary
 VerifyAndAddHIDElement(object);
 }
}

One of two things happens in this function: If the Element passed in is an Array then we
need to parse that array for all of the Elements inside it. Otherwise, if the Element is a
Dictionary, then we try to add that Element to our list of Elements for the Device. The
physical control Elements that we’re looking for are always Dictionary Elements.

Here’s how we parse an Array Element:

Listing 12-7:Parsing an Array of Elements
void MyCFArrayParse(CFArrayRef object)
{
 CFRange range;

 range.location = 0;
 range.length = CFArrayGetCount(object);

 CFArrayApplyFunction(object, range, MyCFArrayCallback, 0);
}

void MyCFArrayCallback (const void * object, void * parameter)
{
 if (CFGetTypeID(object) == CFDictionaryGetTypeID())
 VerifyAndAddHIDElement(object);
}

Chapter 12: Input with the HID Manager 154

Core Foundation does the parsing of the array somewhat automatically for us. We simply
pass it the array object, the number of elements in the array to parse, and a pointer to a
callback function. Then Core Foundation will parse the array for us, and call the
MyCFArrayCallback() function for each element it finds in the array. Since we know that
only Dictionary elements are actual input device controls, we toss out anything else, but if we
come across a Dictionary we try to add it to our list.

Listing 12-8:Verifying an Element and adding it to our List
static void VerifyAndAddHIDElement(CFDictionaryRef dictionary)
{
 CFTypeRef object;
 IOHIDElementCookie cookie;
 long elementType, usagePage, usage;
 long min,max,scaledMin,scaledMax;
 const char *elementName;
 short d, e;

 /***/
 /* FIRST DETERMINE IF THIS IS AN ELEMENT WE CARE ABOUT */
 /***/

 /* GET THE TYPE OF THIS ELEMENT */

 object = CFDictionaryGetValue(dictionary, CFSTR(kIOHIDElementTypeKey));
 if (!object)
 goto skip_element;

 elementType = GetCFNumberFromObject(object);

 /* SKIP ANY TYPES THAT WE DON’T CARE ABOUT */

 switch(elementType)
 {
 case kIOHIDElementTypeInput_Misc:
 case kIOHIDElementTypeInput_Button:
 case kIOHIDElementTypeInput_Axis:
 break;

 default:
 goto skip_element;
 }

 /***/
 /* THIS IS AN ELEMENT WE LIKE, SO EXTRACT THE IMPORTANT DATA */
 /***/

155

 /* GET THE ELEMENT'S COOKIE */

 object = CFDictionaryGetValue(dictionary,
 CFSTR(kIOHIDElementCookieKey));
 cookie = (IOHIDElementCookie)GetCFNumberFromObject(object);

 /* GET ELEMENT’S USAGE PAGE */

 object = CFDictionaryGetValue(dictionary,
 CFSTR(kIOHIDElementUsagePageKey));
 usagePage = GetCFNumberFromObject(object);

 /* THROW OUT CERTAIN ONES */

 if (usagePage == kHIDPage_PID)
 goto skip_element;
 if (usagePage == kHIDPage_LEDs)
 goto skip_element;

 /* GET ELEMENT’S USAGE */

 object = CFDictionaryGetValue(dictionary, CFSTR(kIOHIDElementUsageKey));
 usage = GetCFNumberFromObject(object);

 /* GET MIN/MAX VALUES OF THIS CONTROL */

 object = CFDictionaryGetValue(dictionary, CFSTR(kIOHIDElementMinKey));
 min = GetCFNumberFromObject(object);

 object = CFDictionaryGetValue(dictionary, CFSTR(kIOHIDElementMaxKey));
 max = GetCFNumberFromObject(object);

 object = CFDictionaryGetValue(dictionary,
 CFSTR(kIOHIDElementScaledMinKey));
 scaledMin = GetCFNumberFromObject(object);

 object = CFDictionaryGetValue(dictionary,
 CFSTR(kIOHIDElementScaledMaxKey));
 scaledMax = GetCFNumberFromObject(object);

 /* GET NAME STRING */

 object = CFDictionaryGetValue(dictionary, CFSTR(kIOHIDElementNameKey));
 if (object)
 elementName = GetCFStringFromObject(object);

 if ((object == nil) || (elementName == nil))
 {

Chapter 12: Input with the HID Manager 156

 elementName = CreateElementNameString(usagePage, usage);
 if (elementName == nil)
 goto skip_element;
 }

 /*********************/
 /* SAVE ELEMENT INFO */
 /*********************/

 d = gNumHIDDevices;
 e = gHIDDeviceList[d].numElements;

 if (e >= MAX_HID_ELEMENTS)
 goto skip_element;

 gHIDDeviceList[d].elements[e].elementType = elementType;
 gHIDDeviceList[d].elements[e].cookie = cookie;
 gHIDDeviceList[d].elements[e].usagePage = usagePage;
 gHIDDeviceList[d].elements[e].usage = usage;
 gHIDDeviceList[d].elements[e].min = min;
 gHIDDeviceList[d].elements[e].max = max;
 gHIDDeviceList[d].elements[e].scaledMin = scaledMin;
 gHIDDeviceList[d].elements[e].scaledMax = scaledMax;

 strncpy(gHIDDeviceList[d].elements[e].name, elementName,
 ELEMENT_NAME_MAX_LENGTH); // copy device name string

 /* SET DEFAULT CALIBRATION VALUES */

 SetElementDefaultCalibration (d, e);

 gHIDDeviceList[d].numElements++;

 /**********************************/
 /* TRY TO SUB-RECURSE THE ELEMENT */
 /**********************************/

skip_element:
 RecurseDictionaryElement(dictionary, CFSTR(kIOHIDElementKey));
}

That’s a pretty huge chunk of code, so here goes the explanation. Before we can add the
Element to our list, we’ve got to make sure it’s an element that we care about, so we get the
type out of the Dictionary:

 object = CFDictionaryGetValue(dictionary, CFSTR(kIOHIDElementTypeKey));

157

Then we check it to see if it’s something that we want to keep or toss:

 switch(elementType)
 {
 case kIOHIDElementTypeInput_Misc:
 case kIOHIDElementTypeInput_Button:
 case kIOHIDElementTypeInput_Axis:
 break;

 default:
 goto skip_element;
 }

Obviously we want to keep all Button and Axis control elements, but we also want to keep
the Misc types too because those tend to be joystick hat switches.

Next we gather all sorts of information about the Element in a similar manner to how we
gathered information about Devices earlier. And just like Devices, Elements also have their
own Usage Page and Usage values. The Usage Page for an Element identifies the specific
type of control that it is. The ones we care about are:

 kHIDPage_GenericDesktop
 kHIDPage_KeyboardOrKeypad
 kHIDPage_Button

For unknown reasons, the HID gods didn’t add a Usage Page type to identify axes, sliders,
hat switches, start buttons, D-Pads, etc. Instead they just grouped all of those into the
kHIDPage_GenericDesktop which doesn’t really make any sense (welcome to the HID
Manager).

Anyway, there are a few Usage Page types that we need to specifically look for and elimi-
nate:

 if (usagePage == kHIDPage_PID)
 goto skip_element;
 if (usagePage == kHIDPage_LEDs)
 goto skip_element;

These tend to come up for keyboard devices and cause all sorts of problems if you don’t skip
them. Yes, even the LED’s on your keyboard are considered HID elements, and if you don’t
toss them here they’ll appear to be keys.

Chapter 12: Input with the HID Manager 158

Now we gather some additional information that tells us about the minimum and maximum
values of the control. Different joysticks, for example, will have different ranges of their axis
values. Some may go from 0 to 255 as you move the joystick left to right, while higher-end
ones may go from –1024 to +1024. So, it’s important to know the range so that we can
calibrate the controls, and scale them to numbers our game can use later.

The next step is important, and it is one of the big headaches of the HID Manager. That step
is the act of trying to figure out the name of the Element.

 object = CFDictionaryGetValue(dictionary, CFSTR(kIOHIDElementNameKey));

Only in very rare cases does the HID Manager successfully return the names of the controls
on any given device, so, we’ve got to manually assign them in a new function,
CreateElementNameString(). We pass the Usage Page and Usage values to this function,
and based on those values it will return a string containing the name to give the control.

Listing 12-9:Naming a Control Element
const char *CreateElementNameString(long usagePage, long usage)
{
 const char *c = "Unnamed Element";
 const char *buttonNames[30] =
 {
 "Button 1", "Button 2", "Button 3", "Button 4",
 "Button 5", "Button 6", "Button 7", "Button 8",
 "Button 9", "Button 10", "Button 11", "Button 12",
 "Button 13", "Button 14", "Button 15", "Button 16",
 "Button 17", "Button 18", "Button 19", "Button 20",
 "Button 21", "Button 22", "Button 23", "Button 24",
 "Button 25", "Button 26", "Button 27", "Button 28",
 "Button 29", "Button 30",
 };

 switch(usagePage)
 {
 /**************************/
 /* GENERIC DESKTOP DEVICE */
 /**************************/

 case kHIDPage_GenericDesktop:
 switch(usage)
 {
 case kHIDUsage_GD_X:
 c = "X-Axis";
 break;

 case kHIDUsage_GD_Y:

159

 c = "Y-Axis";
 break;

 case kHIDUsage_GD_Z:
 c = "Z-Axis";
 break;

 case kHIDUsage_GD_Rx:
 c = "Rotate X-Axis";
 break;

 case kHIDUsage_GD_Ry:
 c = "Rotate Y-Axis";
 break;

 case kHIDUsage_GD_Rz:
 c = "Rotate Z-Axis";
 break;

 case kHIDUsage_GD_Slider:
 c = "Slider";
 break;

 case kHIDUsage_GD_Dial:
 c = "Dial";
 break;

 case kHIDUsage_GD_Wheel:
 c = "Wheel";
 break;

 case kHIDUsage_GD_Hatswitch:
 c = "Hat Switch";
 break;

 case kHIDUsage_GD_Start:
 c = "Start";
 break;

 case kHIDUsage_GD_Select:
 c = "Select";
 break;

 case kHIDUsage_GD_DPadUp:
 c = "D-Pad Up";
 break;

 case kHIDUsage_GD_DPadDown:
 c = "D-Pad Down";
 break;

 case kHIDUsage_GD_DPadRight:

Chapter 12: Input with the HID Manager 160

 c = "D-Pad Right";
 break;

 case kHIDUsage_GD_DPadLeft:
 c = "D-Pad Left";
 break;

 }
 break;

 /***********/
 /* BUTTONS */
 /***********/

 case kHIDPage_Button:
 if (usage < 30)
 c = buttonNames[usage-1];
 else
 c = "Button";
 break;

 /*******************/
 /* KEYBOARD DEVICE */
 /*******************/

 case kHIDPage_KeyboardOrKeypad:

 switch(usage)
 {
 case kHIDUsage_KeyboardA:
 c = "A";
 break;
 case kHIDUsage_KeyboardB:
 c = "B";
 break;
 case kHIDUsage_KeyboardC:
 c = "C";
 break;
 case kHIDUsage_KeyboardD:
 c = "D";
 break;
 case kHIDUsage_KeyboardE:
 c = "E";
 break;
 case kHIDUsage_KeyboardF:
 c = "F";
 break;
 case kHIDUsage_KeyboardG:
 c = "G";
 break;
 case kHIDUsage_KeyboardH:

161

 c = "H";
 break;
 case kHIDUsage_KeyboardI:
 c = "I";
 break;
 case kHIDUsage_KeyboardJ:
 c = "J";
 break;
 case kHIDUsage_KeyboardK:
 c = "K";
 break;
 case kHIDUsage_KeyboardL:
 c = "L";
 break;
 case kHIDUsage_KeyboardM:
 c = "M";
 break;
 case kHIDUsage_KeyboardN:
 c = "N";
 break;
 case kHIDUsage_KeyboardO:
 c = "O";
 break;
 case kHIDUsage_KeyboardP:
 c = "P";
 break;
 case kHIDUsage_KeyboardQ:
 c = "Q";
 break;
 case kHIDUsage_KeyboardR:
 c = "R";
 break;
 case kHIDUsage_KeyboardS:
 c = "S";
 break;
 case kHIDUsage_KeyboardT:
 c = "T";
 break;
 case kHIDUsage_KeyboardU:
 c = "U";
 break;
 case kHIDUsage_KeyboardV:
 c = "V";
 break;
 case kHIDUsage_KeyboardW:
 c = "W";
 break;
 case kHIDUsage_KeyboardX:
 c = "X";
 break;
 case kHIDUsage_KeyboardY:
 c = "Y";

Chapter 12: Input with the HID Manager 162

 break;
 case kHIDUsage_KeyboardZ:
 c = "Z";
 break;

 case kHIDUsage_Keyboard1:
 c = "1";
 break;
 case kHIDUsage_Keyboard2:
 c = "2";
 break;
 case kHIDUsage_Keyboard3:
 c = "3";
 break;
 case kHIDUsage_Keyboard4:
 c = "4";
 break;
 case kHIDUsage_Keyboard5:
 c = "5";
 break;
 case kHIDUsage_Keyboard6:
 c = "6";
 break;
 case kHIDUsage_Keyboard7:
 c = "7";
 break;
 case kHIDUsage_Keyboard8:
 c = "8";
 break;
 case kHIDUsage_Keyboard9:
 c = "9";
 break;
 case kHIDUsage_Keyboard0:
 c = "0";
 break;

 case kHIDUsage_KeyboardReturnOrEnter:
 c = "Return";
 break;
 case kHIDUsage_KeyboardEscape:
 c = "ESC";
 break;
 case kHIDUsage_KeyboardDeleteOrBackspace:
 c = "Delete";
 break;
 case kHIDUsage_KeyboardTab:
 c = "Tab";
 break;
 case kHIDUsage_KeyboardSpacebar:
 c = "Spacebar";
 break;
 case kHIDUsage_KeyboardHyphen:

163

 c = " - ";
 break;
 case kHIDUsage_KeyboardEqualSign:
 c = "=";
 break;
 case kHIDUsage_KeyboardOpenBracket:
 c = "[";
 break;
 case kHIDUsage_KeyboardCloseBracket:
 c = "]";
 break;

 case kHIDUsage_KeyboardBackslash:
 c = "Backslash";
 break;
 case kHIDUsage_KeyboardNonUSPound:
 c = "Pound";
 break;
 case kHIDUsage_KeyboardSemicolon:
 c = ";";
 break;
 case kHIDUsage_KeyboardQuote:
 c = "Quote";
 break;
 case kHIDUsage_KeyboardGraveAccentAndTilde:
 c = "~ (tilde)";
 break;

 case kHIDUsage_KeyboardComma:
 c = ",";
 break;
 case kHIDUsage_KeyboardPeriod:
 c = ".";
 break;
 case kHIDUsage_KeyboardSlash:
 c = "/";
 break;
 case kHIDUsage_KeyboardCapsLock:
 c = "CAPSLOCK";
 break;

 case kHIDUsage_KeyboardF1:
 c = "F1";
 break;
 case kHIDUsage_KeyboardF2:
 c = "F2";
 break;
 case kHIDUsage_KeyboardF3:
 c = "F3";
 break;
 case kHIDUsage_KeyboardF4:
 c = "F4";

Chapter 12: Input with the HID Manager 164

 break;
 case kHIDUsage_KeyboardF5:
 c = "F5";
 break;
 case kHIDUsage_KeyboardF6:
 c = "F6";
 break;
 case kHIDUsage_KeyboardF7:
 c = "F7";
 break;
 case kHIDUsage_KeyboardF8:
 c = "F8";
 break;
 case kHIDUsage_KeyboardF9:
 c = "F9";
 break;
 case kHIDUsage_KeyboardF10:
 c = "F10";
 break;
 case kHIDUsage_KeyboardF11:
 c = "F11";
 break;
 case kHIDUsage_KeyboardF12:
 c = "F12";
 break;
 case kHIDUsage_KeyboardF13:
 case kHIDUsage_KeyboardPrintScreen:
 c = "F13";
 break;
 case kHIDUsage_KeyboardF14:
 case kHIDUsage_KeyboardScrollLock:
 c = "F14";
 break;
 case kHIDUsage_KeyboardF15:
 case kHIDUsage_KeyboardPause:
 c = "F15";
 break;

 case kHIDUsage_KeyboardInsert:
 c = "Insert";
 break;
 case kHIDUsage_KeyboardHome:
 c = "Home";
 break;
 case kHIDUsage_KeyboardPageUp:
 c = "Page Up";
 break;
 case kHIDUsage_KeyboardDeleteForward:
 c = "Del";
 break;
 case kHIDUsage_KeyboardEnd:
 c = "End";

165

 break;
 case kHIDUsage_KeyboardPageDown:
 c = "Page Down";
 break;

 case kHIDUsage_KeyboardRightArrow:
 c = "Right Arrow";
 break;
 case kHIDUsage_KeyboardLeftArrow:
 c = "Left Arrow";
 break;
 case kHIDUsage_KeyboardDownArrow:
 c = "Down Arrow";
 break;

// ** for some reason kHIDUsage_KeyboardRightControl appears to really
// be the down arrow, but only on 10.2.6, not 10.3

 case kHIDUsage_KeyboardRightControl:
 if (gPantherOrBetter)
 c = nil;
 else
 c = "Down Arrow";
 break;

 case kHIDUsage_KeyboardUpArrow:
 c = "Up Arrow";
 break;

 case kHIDUsage_KeypadNumLock:
 c = "Num Lock / Clear";
 break;
 case kHIDUsage_KeypadSlash:
 c = "Keypad Slash /";
 break;
 case kHIDUsage_KeypadAsterisk:
 c = "Keypad Asterisk *";
 break;
 case kHIDUsage_KeypadHyphen:
 c = "Keypad Hyphen -";
 break;
 case kHIDUsage_KeypadPlus:
 c = "Keypad Plus +";
 break;
 case kHIDUsage_KeypadEnter:
 c = "Keypad Enter";
 break;

 case kHIDUsage_Keypad1:
 c = "Keypad 1";
 break;
 case kHIDUsage_Keypad2:

Chapter 12: Input with the HID Manager 166

 c = "Keypad 2";
 break;
 case kHIDUsage_Keypad3:
 c = "Keypad 3";
 break;
 case kHIDUsage_Keypad4:
 c = "Keypad 4";
 break;
 case kHIDUsage_Keypad5:
 c = "Keypad 5";
 break;
 case kHIDUsage_Keypad6:
 c = "Keypad 6";
 break;
 case kHIDUsage_Keypad7:
 c = "Keypad 7";
 break;
 case kHIDUsage_Keypad8:
 c = "Keypad 8";
 break;
 case kHIDUsage_Keypad9:
 c = "Keypad 9";
 break;
 case kHIDUsage_Keypad0:
 c = "Keypad 0";
 break;

 case kHIDUsage_KeypadPeriod:
 c = "Keypad Period .";
 break;
 case kHIDUsage_KeyboardNonUSBackslash:
 c = "Keypad Backslash";
 break;

 case kHIDUsage_KeypadEqualSign:
 c = "Keypad Equal =";
 break;
 case kHIDUsage_KeyboardHelp:
 c = "Help";
 break;
 case kHIDUsage_KeypadComma:
 c = "Keypad Comma ,";
 break;

 case kHIDUsage_KeyboardReturn:
 c = "Return";
 break;

 case kHIDUsage_KeyboardLeftControl:
 c = "CTRL";
 break;
 case kHIDUsage_KeyboardLeftShift:

167

 c = "Shift";
 break;
 case kHIDUsage_KeyboardLeftAlt:
 c = "Option";
 break;
 case kHIDUsage_KeyboardLeftGUI:
 c = "Apple/Command";
 break;

 default:
 c = nil; // key not supported so pass
 // back nil so that we skip the
 // element
 }
 break;

 }

 return(c);
}

Wow, that function was even more gigantic than the previous one, eh? It may be big, but it
doesn’t really do anything magical. It’s just a giant switch statement that sets the Element’s
name string based on its usagePage and usage variables.

At the top of the function we have a large table of button names used to name the buttons on
a device:

 const char *buttonNames[30] =
 {
 "Button 1", "Button 2", "Button 3", "Button 4",
 "Button 5", "Button 6", "Button 7", "Button 8",
 …
 …

We use this to assign names to any buttons on a device that don’t report their own name
string to the HID Manager. This is unfortunate, because the user is not going to have any
idea which button on his gamepad is the one named “Button 1”. If the HID Manager were
smart like Input Sprocket, then it would return the correct name strings like “Red Button”, or
“C Button” to correctly identify it. This is one of the many fundamental problems in trying to
support these devices on OS X. Even Apple’s own devices like the keyboard don’t even
return key names! That’s what most of CreateElementNameString() is doing – it’s manu-
ally naming every kind of key that we have a case for. Good luck supporting non-English
keyboards! This is a disaster.

Chapter 12: Input with the HID Manager 168

The only way around this naming problem is to go out and buy every kind of input device on
the market, plug them in, and run your HID code to find out which button or key does what.
Then write a massive table into your code that assigns the correct name string to the various
devices. Since you’re not likely to go to that much trouble, we’ll stick with just using the
generic button names.

Another thing to note in our CreateElementNameString() function is that there is a hack in
there to fix a HID Manager keyboard bug:

 case kHIDUsage_KeyboardRightControl:
 if (gPantherOrBetter)
 c = nil;
 else
 c = "Down Arrow";
 break;

Prior to Mac OS 10.3 (Panther) there was a bug that would cause the Down Arrow key to
show up as the Right Control key on some systems. Even though the usage value is
kHIDUsage_KeyboardRightControl, that element is actually the down arrow key! There
would be another element with the usage value of kHIDUsage_KeyboardDownArrow, but
that’s not really the down arrow. That element appears to be totally bogus since it doesn’t
seem to map to any key at all. This would happen 100% of the time on every Mac that I own,
however, there were certain models of Macs that seemed to work fine (according to Apple).
So, we’ve put in a hack here that checks if we’re on 10.3 or later, and if so we just toss the
Right Control key element. But if we’re on 10.2 then we set our name string to “Down
Arrow”.

You should also be aware that the keyboard does not work with the HID Manager at all on
Mac OS 10.1 or earlier. You must have 10.2.6 or later for the HID to be at all useful.
Preferably, your game should require 10.3 or later since that version of the HID is signifi-
cantly more reliable than the older versions.

The IOHIDUsageTables.h header file defines constants for the modifier keys as this:

 kHIDUsage_KeyboardLeftControl
 kHIDUsage_KeyboardLeftShift
 kHIDUsage_KeyboardLeftAlt
 kHIDUsage_KeyboardLeftGUI
 kHIDUsage_KeyboardRightControl
 kHIDUsage_KeyboardRightShift
 kHIDUsage_KeyboardRightAlt
 kHIDUsage_KeyboardRightGUI

169

You’ll notice that the modifiers all have a right and left version. Well, even though most
keyboards do have different left and right modifier keys, these values are bogus in the world
of HID. None of the right-side modifier keys will respond at all! This is probably another
bug in the HID Manager, or maybe it’s just a “feature”, but either way if you see an Element
with a Usage value of kHIDUsage_KeyboardRightGUI it won’t work. The user can hammer
on that right Command key to their heart’s content, but the HID Manager will never register
key press on that key. Only the left modifier values work.

Reading Input Data
Congratulations! You’ve made it through the minefield of bugs trying to get a list of all your
device and control data. Now it’s time to actually read some data! There are two different
methods for reading data from a HID Device: You can poll the data directly, or create event
queues that receive updates as they happen. There are pro’s and con’s to each method:

Polling
Polling data is the process of manually reading the value of each control element that our
game needs. The nice thing about polling is that the code is very simple and clean, but the
downside is that we’re constantly reading the values of lots of elements, and this is consid-
ered by some to be inefficient. However, most games only have a small number of control
needs (move, jump, fire, duck, etc), so the overhead of polling the controls for each of those
really isn’t bad. It costs you maybe 1:10,000th of a second at worst.

Queuing
Queuing is more efficient than polling since you’re not constantly reading data from your
USB devices, but the complexity of setting up a queue for every Element you’re using adds a
lot more mess to an already messy API. Queuing does have one other small advantage: you
won’t miss any button presses. When polling, it’s possible that you’ll miss a button press if
the user presses the button and releases it in the same frame before you’ve had a chance to
read the Element’s state. With queuing, every press of every button gets added to the queue.
However, in the real world this just doesn’t matter since games run at 30+ frames per second,
and I challenge anyone to try pressing and releasing the Fire button on a gamepad in 1/30th of
a second or faster.

In my humble opinion, polling is the way to go since it saves a lot of messy code, and the
downsides really aren’t a concern. So, in the game engine that we’re building here we’ll be
sticking with polling, but in case you do want to set up queues for your Elements, here’s how
you would do it:

Chapter 12: Input with the HID Manager 170

Listing 12-10: Initializing a Queue and Reading Data from It
#define QUEUE_SIZE 10 // maximum # of values in queue before oldest
 // elements in queue get purged

IOHIDQueueInterface **CreateQueueForHIDElements(
 IOHIDDeviceInterface **hidDeviceInterface,
 long numElementsToQueue,
 IOHIDElementCookie *elementCookies)
{
 IOHIDQueueInterface **queue;
 long i;

 /* CALL OUR DEVICE INTERFACE TO MAKE A QUEUE */

 queue = (*hidDeviceInterface)->allocQueue(hidDeviceInterface);
 if (queue)
 {
 (*queue)->create(queue, 0, QUEUE_SIZE);

 /* ADD ELEMENTS TO THE QUEUE */
 //
 // We put all of the elements into the same queue
 //

 for (i = 0; i < numElementsToQueue; i++)
 (*queue)->addElement(queue, elementCookies[i], 0);

 /* START DATA DELIVERY TO QUEUE */

 (*queue)->start(queue);
 }

 return(queue);
}

void ReadDataFromDeviceQueue(IOHIDQueueInterface **queue)
{
 AbsoluteTime zeroTime = {0,0};
 IOHIDEventStruct event;
 HRESULT result;

 do
 {
 /* GET THE NEXT EVENT (IF ANY) OUT OF THE QUEUE */

171

 result = (*queue)->getNextEvent(queue, &event, zeroTime, 0);
 if (!result)
 {
 /* PASS THE ELEMENT COOKIE AND THE VALUE TO SOME HANDLER */

 MyHandleQueueEvent(event.elementCookie, event.value);
 }
 }while(!result);
}

Now to put things into perspective, let’s see how we read an Element’s value with polling
instead:

Listing 12-11: Polling an Element
 result = (*hidDeviceInterface)->getElementValue(hidDeviceInterface,
 cookie, &hidEvent);
 if (result != noErr)
 value = hidEvent.value = 0;
 else
 value = hidEvent.value;

Much simpler than queuing, don’t you think? There is only one thing to be aware of, and it’s
another “feature” of the HID Manager. Notice that we check the result value returned from
getElementValue(). This is critical because the HID will sometimes malfunction and spit
out an error code when you call this. It’s very rare, but it happens now and then. So, if an
error occurs just assume that the value of the element is 0.

Input.c
The “HID Manager Input.xcode” project has a full implementation of everything we’ve
talked about in this Chapter. This is heavily based on the input system that I used in Nano-
saur 2, and it includes a configuration dialog for letting the user configure their devices based
on a needs list. It also has code for saving and restoring the configuration of all the devices
along with some calibration functions for joystick axes.

Chapter 12: Input with the HID Manager 172

Figure 12-3: Our HID Configuration Dialog

If you’re familiar with how Input Sprocket used to work, then you’ll understand how my little
HID system in Input.c works since it is also based on a “needs” list. A Need is a structure
that defines an action that the game performs based on input from a device. For example, a
standard game will have a Need for the fire weapon action, a Need for the turn left action, a
Need for the jump action, etc. The InputNeedType structure that we’re using is defined like
this:

typedef struct
{
 char name[64];
 short defaultKeyboardKey;
 NeedElementInfoType elementInfo[MAX_HID_DEVICES];
 long value;
 long oldValue;
 Boolean newButtonPress;
}InputNeedType;

name
This is a 64-character text string containing the name of the action to be performed such as
“Jump” or “Turn Left”. This is what the user will see in the configuration dialog.

defaultKeyboardKey
This is the default keyboard element usage value to assign to this action. For example, to
assign the right arrow key to the Turn Right action, you would set it to
kHIDUsage_KeyboardRightArrow.

173

elementInfo
You can assign multiple device elements to the same Need. For example, the user might
have assigned the spacebar to the Fire action, and also assigned the A button on his gamepad
to the Fire action. So, for each device there may be an element assigned to this Need, and the
elementInfo will tell us the status of each of those elements.

typedef struct
{
 short elementNum;
 long elementCurrentValue;
}NeedElementInfoType;

The elementNum value is just an index into the Element list for each device, and
elementCurrentValue is the most recently polled value of that Element.

value
This is the final value of the Need. We get the value by scanning each Element assigned to
this Need. The largest value is the one we keep. So, if the Fire button on the keyboard is not
pressed (giving a value of 0), but the Fire button on the gamepad is pressed (giving a value of
1), our engine will take the 1 and put that in the value field.

oldValue
Every time we update all of our Needs by polling all the elements assigned to them, it’s a
good idea to keep a copy of the previous value in case anything in the game needs to know
old info (say, for determining state changes).

newButtonPress
This gives our code an easy way to tell if a button press is new on this frame. It’s calculated
simply by comparing value with oldValue. If oldValue was 0 and value is 1 then obvi-
ously this is a new button press.

Toward the top of the Input.c file all of the Needs for our sample application are defined:

Listing 12-12: The Sample Project’s Needs List
InputNeedType gControlNeeds[NUM_CONTROL_NEEDS] =
{
 { // kNeed_TurnLeft_Button
 "Turn Left Button",
 kHIDUsage_KeyboardLeftArrow, // keyboard default = left arrow
 },

 { // kNeed_TurnRight_Button
 "Turn Right Button",
 kHIDUsage_KeyboardRightArrow, // keyboard default = right arrow

Chapter 12: Input with the HID Manager 174

 },

 { // kNeed_Forward_Button
 "Forward Button",
 kHIDUsage_KeyboardUpArrow, // keyboard default = up arrow
 },

 { // kNeed_Backward_Button
 "Backward Button",
 kHIDUsage_KeyboardDownArrow, // keyboard default = down arrow
 },

 { // kNeed_XAxis
 "X-Axis",
 0,
 },

 { // kNeed_YAxis
 "Y-Axis",
 0,
 },

 { // kNeed_Fire
 "Fire Button",
 kHIDUsage_KeyboardSpacebar, // keyboard default = spacebar
 },
};

This is pretty straightforward stuff. We’re just filling the array with some of the basic fields
for each Need. We set the name followed by the default keyboard key. You’ll notice that we
don’t set a default key for the X-Axis and Y-Axis Needs since there’s no way to simulate an
axis on a keyboard. If you wanted, you could assign a key here, but the axis will only range
from 0 to 1 as you press and release the key.

There you have it. That’s the basic introduction to the HID Manager, and you have my
condolences. Unless your game will really benefit from gamepad or joystick input, my
recommendation is to steer clear of the HID Manager, and just stick with the other input
methods for reading the keyboard and mouse. It’ll save you weeks of coding and debugging,
and years of your life since the stress involved with doing tech support for the HID Manager
will turn your hair gray in no time.

175

Chapter 13: Writing a Maya Plug-in

We’ve now got a pretty huge chunk of our game engine written, but there’s one really
important thing missing: 3D model data. Up until now we’ve just been spinning a colored
cube whose geometry is generated in the code. Getting 3D model data into an application
takes some work, so we’ll need a whole chapter to cover it.

The de-facto standard in 3D modeling applications is Maya. There are plenty of other 3D
modeling programs on the Mac, but odds are that nobody will take you seriously unless
you’re using Maya. So, if you haven’t done so already, you should shell out the $2000 and
go buy a copy along with some of the many Maya books that are available.

On the CD for this book you’ll see a project called “bg3dExporter.xcode”. This project
contains a full, working exporter plug-in for Maya 6. In this chapter I’m going to discuss the
fundamental things you need to know about writing an exporter plug-in for Maya, and I’ll
talk a bit about the BG3D file format that our game engine is going to use in all of the sample
code to follow.

Initializing A Maya Plug-In
Maya has a very powerful plug-in architecture, but unfortunately it is written in C++ instead
of straight C, and because of the way they did their API you can only call their functions from
C++. In the bg3dExporter.xcode project you’ll find the Maya.cpp source file. This file
contains all of the code that interfaces directly with the Maya API calls.

There are several things that must be set up just right in order for Maya to recognize a plug-
in:

Listing 13-1:The Plug-In Command Definition
class bg3d : public MPxCommand
{
public:
 bg3d();
 virtual ~bg3d();

 MStatus doIt(const MArgList& args);
 static MSyntax newSyntax();
 static void* creator();

Chapter 13: Writing a Maya Plug-in 176

private:
 void printType(const MObject& node,
 const MString& prefix);
 bool quiet;
};

This cryptic C++ code is essentially telling Maya that our command “bg3d” should call the
function doIt() whenever we execute the command from the Maya command line.

We also need an initialization function like this:

Listing 13-2:Initializing the Plug-In
MStatus initializePlugin(MObject obj)
{
 MStatus status;
 MFnPlugin plugin(obj, "Alias", "3.0", "Any");

 status = plugin.registerCommand("bg3d",
 bg3d::creator,
 bg3d::newSyntax);
 if (!status)
 {
 status.perror("registerCommand");
 return status;
 }

 return status;
}

This initialization changes a little every time there’s a new version of Maya. For Maya 6 we
need to set this up exactly as shown. When a new version of Maya comes out you’ll need to
check the sample code that comes with it to see what the new version requires on this line:

 MFnPlugin plugin(obj, "Alias", "3.0", "Any");

The plugin() call creates a plug-in object that we can use to call Maya’s plug-in API calls.
The first API call that we make is used to register our plug-in’s command name with Maya:

 status = plugin.registerCommand("bg3d",
 bg3d::creator,
 bg3d::newSyntax);

By passing “bg3d” to registerCommand(), Maya will know that when the user types “bg3d”
on the command line, it should invoke this plug-in.

177

The Plug-In Entry Point
We’ve registered our plug-in with Maya, so if the user types “bg3d” it causes Maya to call
the doIt() function. This function triangulates the entire scene, and then calls our main
exporter code that decomposes the scene and writes out the data. When that is done, we undo
the triangulation before returning back to Maya.

Listing 13-3:The doIt() Plug-In entry Function
MStatus bg3d::doIt(const MArgList& args)
{

 /* ISSUE COMMAND TO TRIANGULATE EVERYTHING */

 MString cmd = "polyCleanupArgList 3 {
 \"1\",\"1\",\"1\",\"1\",\"1\",\"1\",\"1\",\"1\",\"1\",\"1e-
 05\",\"0\",\"1e- 05\",\"0\",\"1e-05\",\"0\",\"-1\",\"0\" };";
 MGlobal::executeCommand(cmd, true, true);
 MGlobal::executeCommand(cmd, true, true);

 /* PROCESS PLUGIN */

 MayaDisplayMessage("Calling PluginEntry()");
 PluginEntry();

 /* ISSUE MEL COMMAND TO UNDO TRIANGULATE */

 MString cmd2 = "Undo";
 MGlobal::executeCommand(cmd2, true, true);
 MGlobal::executeCommand(cmd2, true, true);

 return MS::kSuccess;
}

It is possible to issue commands to Maya from inside a plug-in. The first thing we do in the
doIt() function above is to issue a polyCleanupArtList command which will triangulate
the entire scene for us. The gibberish after the command is actually a list of parameters to
send to the command. I have no idea what that gibberish actually means, and I don’t even
need to know because I got all of that text from Maya’s Script Editor. Here’s how it’s done:

Run Maya and go to the Polygon menu where you’ll see a menu item called Cleanup. Select
the Cleanup option box to get to the Polygon Cleanup Options dialog:

Chapter 13: Writing a Maya Plug-in 178

Figure 13-1: The Polygon Cleanup Options dialog

Make sure all of the tessellation options are checked. Then click the Apply button to cause
the scene to get tessellated into triangles. Now look in the Maya Script Editor window where
you’ll see the full command that was issued:

Figure 13-2: The polyCleanupArgList command that was issued

This command’s text is exactly what we’ve copied into the doIt() function, so by issuing
that command in our plug-in we’re doing the exact same thing that the Polygon Cleanup

179

Options dialog did for us. This can be done for any command in Maya. Just see what the
command text is in the Script Editor, and then copy-paste it into your code.

You will notice that we issue the polyCleanupArgList command twice:

 MGlobal::executeCommand(cmd, true, true);
 MGlobal::executeCommand(cmd, true, true);

The reason for this is that this Maya command is a little buggy. It doesn’t always tessellate
everything down to triangles on the first pass, but doing it twice will ensure that everything
has been triangulated.

Once our plug-in is done exporting all of that triangle data, we need to return Maya to its
original state by issuing two Undo commands to undo both of our polyCleanupArgLlst
commands.

 MString cmd2 = "Undo";
 MGlobal::executeCommand(cmd2, true, true);
 MGlobal::executeCommand(cmd2, true, true);

Getting the Scene’s Layer Info
Polygon meshes in Maya can be grouped into Layers. A Layer is a very useful way to
organize multiple meshes into single Objects. We can use layers as a way of having multiple
objects in a single file, and our exporter can export the data in each layer as a separate BG3D
file:

Figure 13-3: Our plug-in’s options dialog

Chapter 13: Writing a Maya Plug-in 180

For example, below is a screenshot showing the Maya file that has all of the rock models
used in Nanosaur 2. The BG3D exporter has the option to save each rock model as a differ-
ent file whose name is the same as the Layer name. So, the layer “tall_rock_1” will be
exported as “tall_rock_1.bg3d”.

Figure 13-4: Six different rock models in one Maya file.

Our plug-in simply has to scan Maya’s Layer List, find the mesh data in each layer, and then
output that mesh data to a BG3D file.

Listing 13-4:Get Maya’s Layer List
OSErr Maya_GetLayersInfo(void)
{
 int i, j;
 MStatus stat;
 bool visible;
 MStringArray layerMemberString;

 gNumLayers = 0; // init layer count

 /***/
 /* SCAN THRU ALL DISPLAY LAYER DG NODES TO GET ATTRIB INFO */
 /***/

 /* START ITERATION LOOKING ONLY FOR DISPLAY LAYERS */

181

 MItDependencyNodes dgIter(MFn::kDisplayLayer, &stat);

 /* ITERATE THRU ALL LAYERS */

 for (; !dgIter.isDone(); dgIter.next())
 {
 MObject dgItem = dgIter.item(); // get this layer's MObject
 MFnDependencyNode fnNode(dgItem); // get the node of Object

 /* GET THE LAYER'S NAME & CONVERT TO PASCAL STRING */

 MString layerName = fnNode.name(); // get name from the node
 c2pstrcpy(gLayerInfoList[gNumLayers].name, layerName.asChar());

 /* SEE IF THIS LAYER IS VISIBLE */

 // get visibility attribute of the node
 MPlug visPlug = fnNode.findPlug("visibility", &stat);

 // get value of the attribute
 stat = visPlug.getValue(visible);

 gLayerInfoList[gNumLayers].isVisible = visible;

 gNumLayers++;
 }

 /**/
 /* FIND THE NAMES OF ALL OF THE OBJECTS THAT BELONG TO EACH LAYER */
 /**/

 /* SCAN EACH LAYER WE GOT ABOVE */

 for (i = 0; i < gNumLayers; i++)
 {
 char layerName[255];
 long numMembers;

 /* ISSUE COMMAND TO GET DISPLAY LAYER MEMBERS */
 //
 // First build the command w/o the layer’s name, and
 // then append the layer name to the command string
 //

 MString cmd = "editDisplayLayerMembers -q ";
 p2cstrcpy(layerName, gLayerInfoList[i].name);
 cmd += layerName;

Chapter 13: Writing a Maya Plug-in 182

 MGlobal::executeCommand(cmd, layerMemberString, false, false);

 /* COUNT # OF STRINGS RETURNED */

 numMembers = layerMemberString.length();
 gLayerInfoList[i].numMembers = numMembers;

 /* SAVE THE NAMES OF ALL THOSE OBJECTS INTO OUR LIST */

 for (j = 0; j < numMembers; j++)
 {
 const char *memberName = layerMemberString[j].asChar();
 c2pstrcpy(gLayerInfoList[i].memberNames[j], memberName);
 }
 }

 return(noErr);
}

This function has two sections: the first scans the layers and determines which ones are
visible (we don’t want to export any layers that are hidden), and then the second section
determines which objects are assigned to each layer.

A scene in Maya is built out of “DG Nodes” which are all linked together to form a hierarchy.
Each node contains data of different types. There are layer nodes, texture nodes, geometry
nodes, etc. In this case, we’re looking for Layer nodes, so we start iterating through our
scene’s nodes with this call:

 MItDependencyNodes dgIter(MFn::kDisplayLayer, &stat);

This creates an iteration object that will iterate through only Display Layers. To increase the
iteration to the next layer, you invoke the iteration’s next() function like this:

 dgIter.next();

Then, to determine if we’ve reached the end of the list we test this function:

 dgIter.isDone();

This is the method for iterating through any kind of data in Maya, so you’ll see it elsewhere
in our exporter’s code. The iteration object has all sorts of functions that can be called to get
information about the node. The next thing we need to do is to get a reference to the data
“Object” in this node:

 MObject dgItem = dgIter.item();

183

As we scan through these node objects, we get the MFnDependencyNode for each one:

 MFnDependencyNode fnNode(dgItem);

This dependency node contains all of the function pointers relevant to this specific type of
object. This is a Layer object, so all of the functions in fnNode will be Layer-related. There
are two things we need to know about the Node: its name and its visibility flag. Getting the
name is easy:

 MString layerName = fnNode.name();

The MString variable layerName is a Maya string object, so to make it useful we need to call
a sub-function to get the pointer to the actual C string text:

 layerName.asChar();

Next we want to determine if this Layer is visible or not. Layers in Maya can be hidden or
shown by toggling the Visibility checkbox in the Layer Pane:

Figure 13-5: Layer pane showing layer 3 is hidden

Getting the Visibility attribute of a Layer is different from getting the name since there isn’t
an explicit getVisibility() function in the Layer Object. Instead, we have to search for an
attribute named “visibility” in the node by doing this:

 MPlug visPlug = fnNode.findPlug("visibility", &stat);
 stat = visPlug.getValue(visible);

Chapter 13: Writing a Maya Plug-in 184

The findPlug() function will look for an attribute named “visibility” in the Layer object.
Then, to get the value of the visibility attribute, we call getValue() which returns a Boolean
value in the variable visible.

At this point we’ve got a list of all of the Layers in our scene, so now our
Maya_GetLayersInfo() function needs to determine which geometry objects are assigned to
each layer. This is a bit tricky because there’s no easy way to find this out. You’d think that
there would be a function call to get the referenced objects for each layer, but there isn’t.
Instead we’ve got to do this the hard way by issuing a command to Maya which will spit out
a list of the names of all of the objects associated with a layer:

 MString cmd = "editDisplayLayerMembers -q ";
 p2cstrcpy(layerName, gLayerInfoList[i].name);
 cmd += layerName;

This code builds a command string that looks something like “editDisplayLayerMembers –
q layer1”, and then we execute the command in the usual way:

 MGlobal::executeCommand(cmd, layerMemberString, false, false);

The variable layerMemberString will contain an array of MString objects upon return from
executing this command. The number of members (i.e. geometry meshes) found is deter-
mined by counting the number of strings returned:

 numMembers = layerMemberString.length();

The C string pointers are extracted from the MString objects the same way as we did for the
Layer names earlier:

 const char *memberName = layerMemberString[j].asChar();

When the Maya_GetLayersInfo() function completes we’ll have a list of Layers, and for
each Layer we’ll have a list of the names of the objects associated with that Layer. This
member list contains more than just the names of the geometry meshes in that layer. It may
also contain the names of transform objects and shapes as well. We’ll be tossing that data out
later once we identify those objects, but for now it’s all in each Layer’s member name list.

Extracting Geometry Data
The meat of any plug-in is the part that actually gets geometry data, and does something with
it. In our case, we need to find all of the vertices, polygons, and materials associated with all

185

of the meshes in our scene, and then save them out to a BG3D file. We can iterate through all
of the meshes in our scene much in the same way that we iterated through all of the layers
earlier, but things get much more complicated here. The basic flow of things goes like this:

Loop Through All Layers
• Iterate through all Meshes
• If Mesh’s name is in our Layer’s member list then this mesh is in this layer.

Find the materials assigned to this mesh
- find the mesh faces assigned to this material

- get face vertex points, uv’s, normals, and colors

Iterating through the Meshes
In Maya.cpp the function that performs this task is Maya_ExtractFacesAndMaterials().
This function is large and contains a lot of code that isn’t of much interest here, so rather than
listing the whole thing and discussing it line by line, I’m going to discuss the fundamental
parts of the extraction process. For starters, to iterate through the Meshes in the scene we
need to create an iteration object:

 MItDag dagIter(MItDag::kBreadthFirst, MFn::kMesh, &stat);

Iterating through meshes is exactly the same as iterating through layers, so we use the next()
and isDone() functions to move from the current mesh to the next. To get each mesh’s data
we first must create a path to its node:

 dagIter.getPath(dagPath);

Then we can extract the function pointers for the node like this:

 MFnDagNode dagNode(dagPath, &stat);

The dagNode variable is now what we can use to access the Mesh’s functions. This seems
like a long way to go to do this, and it is. If you’ve ever used the plug-in API for other 3D
modeling applications such as Lightwave then this probably seems overly complicated.

Even though we requested only Meshes when we initialized our iteration object dagIter, it is
still wise to verify the node since sometimes Maya will give us data that we don’t want:

 if (dagNode.isIntermediateObject())
 continue;
 if (!dagPath.hasFn(MFn::kMesh))
 continue;

Chapter 13: Writing a Maya Plug-in 186

 if (dagPath.hasFn(MFn::kTransform))
 continue;

There are three tests that are performed here. First, we test to see if the Node is an “interme-
diate object”. We don’t want those, so skip them. Second, we double-check that the node
has function pointers to access Mesh data. If not then it’s an invalid mesh, so skip it. Finally,
if the node has transformation function pointers then something isn’t right, so skip it. After
this, we can be assured that the node really is a Mesh object.

Our iteration is going through every mesh in the scene, but we only want meshes for the
current layer that we’re exporting, so, we need to get the name of this mesh and compare it to
the list of object names in our Layer. For each mesh, we get its name like so:

 MString meshPathMString = dagNode.partialPathName();
 const char *meshPathNamePtr = meshPathMString.asChar();

If that name string isn’t in the current layer’s list then we skip it and iterate to the next mesh,
but if there is a match then it’s time to extract some data out of it.

Iterate Through the Material’s Triangle List
Here’s where things get a little funky. The way we extract polygons and vertices out of a
mesh isn’t by directly extracting that data from our dagNode. Nope, instead what we do is
find the Material assigned to this Mesh, and then find the polygons associated with that
Material. To get the list of all material objects connected to the Mesh we do this:

 MObjectArray sets;
 MObjectArray comps;

 MFnMesh fnMesh(dagPath);

 unsigned instanceNumber = dagPath.instanceNumber();

 fnMesh.getConnectedSetsAndMembers(instanceNumber, sets,
 comps, true);

A mesh may have multiple materials assigned to it, but for simplicity we’re only going to
look for the first material, so we get the first element out of the material array:

 MObject set = sets[0]; // first material in list
 MObject comp = comps[0];

Maya has many types of materials, but the only kinds we’re interested in are Surface Shaders
since those are what we can easily export to the BG3D file and OpenGL can use. Determin-

187

ing if a material is a Surface Shader is similar to finding the Visibility attribute in a layer, but
this time we look for an attribute named “surfaceShader”:

 MFnSet fnSet(set);
 MFnDependencyNode dnSet(set);

 MObject ssAttr = dnSet.attribute(
 MString("surfaceShader"));
 MPlug ssPlug(set, ssAttr);

 MPlugArray srcPlugArray;
 ssPlug.connectedTo(srcPlugArray, true, false);

 if (srcPlugArray.length() == 0)
 continue;

Once again, it’s a little cryptic what’s going on here thanks to C++, but all that is happening
is that we’re making sure that this material object has a surfaceShader attribute. If it does,
then we can extract the Surface Shader’s node:

 MObject shaderObject = srcPlugArray[0].node();

Iterate Through a Polygon’s Vertices
Later, we’ll see how to extract color and texture information from the shader object, but right
now we’re concerned with extracting the mesh data. We need to set up another iteration
object so that we can iterate through all of the polygons associated with the current material.
This should be looking familiar by now:

 MItMeshPolygon piter(dagPath, comp);

Now things get easier because extracting polygon data is simple and logical. First we’ll get
the number of vertices in this polygon:

 numPoints = piter.polygonVertexCount();

Since we tessellated the entire scene earlier, numPoints should always come up as 3, but it’s
always a good idea to verify it just in case. To get the coordinates of each of the three
vertices we do this:

 for (i = 0; i < 3; i++)
 {
 float pointtemp[4];

 MPoint mpoint = piter.point(i, MSpace::kWorld);

Chapter 13: Writing a Maya Plug-in 188

 mpoint.get(pointtemp);

 x[i] = pointtemp[0];
 y[i] = pointtemp[1];
 z[i] = pointtemp[2];
 }

Note that we are asking for the coordinates in world-space by passing kWorld into the
point() function. This causes the coordinates to be returned as they appear in Maya, but the
scale may be different since the API always returns coordinates in the millimeter scale. In
other words, if you’re in meter mode when you’re modeling in Maya and then you export
your model, the coordinates will be 100x what you’d expect. So, suppose you’re in meter
mode and you have a vertex at the coordinate 45, 100, -17. Well, the API is going to give
you the value 4500, 10000, -1700 because that’s what it is in millimeters. This means you
have a choice of either always working in millimeter mode in Maya to keep things even, or if
you prefer working in meters then you’ll need to divide each coordinate x,y,z by 100 to scale
it down. I prefer to work in meters in Maya, so the BG3D Exporter project does divide all the
coordinates to keep them at the proper scale. You may need to modify this depending on
what unit scale mode you prefer to work with in Maya.

Extracting the polygon’s vertex indices is very easy, and these will be in counter-clockwise
order so that backfaces will be correct:

 vertexIndices[0] = piter.vertexIndex(0);
 vertexIndices[1] = piter.vertexIndex(1);
 vertexIndices[2] = piter.vertexIndex(2);

Getting the polygon vertex normals, UV’s, and colors is just as easy as getting the coordi-
nates. When reading in the vertex normals it’s always a smart idea to make sure that they’re
normalized:

 for (i = 0; i < 3; i++)
 {
 double normaltemp[3];
 Mvector mvec;

 piter.getNormal(i, mvec, MSpace::kWorld);
 mvec.get(normaltemp);

 triNormals[i].x = normaltemp[0];
 triNormals[i].y = normaltemp[1];
 triNormals[i].z = normaltemp[2];

 OGLVector3D_Normalize(&triNormals[i], &triNormals[i]);
 }

189

Reading UV’s goes like this:

 for (i = 0; i < 3; i++)
 {
 float2 tempUV;

 piter.getUV(i, tempUV);

 triUVs[i].u = tempUV[0];
 triUVs[i].v = tempUV[1];
 }

Reading vertex colors is equally as easy, but we do need to be careful about one thing:
Calling the iteration’s getColor() function will return black (0,0,0) if no vertex color has
explicitly been set in Maya, so it is important to verify that the vertex actually has a color
before trying to get it:

 for (i = 0; i < 3; i++)
 {
 if (piter.hasColor(i, &stat)) // does this vertex have color?
 {
 MColor mcolor;
 piter.getColor(mcolor, i);

 triColors[i].r = mcolor.r;
 triColors[i].g = mcolor.g;
 triColors[i].b = mcolor.b;
 triColors[i].a = mcolor.a;
 }
 else
 {
 triColors[i].r =
 triColors[i].g =
 triColors[i].b =
 triColors[i].a = 1.0;
 }
}

Extracting Shader Data
Earlier, we found a Shader Object assigned to a Mesh, so, now let’s see how to extract
information from it. The first piece of information we should get is the texture map (if any).
The pathname to the shader’s texture file can be found with this code:

Chapter 13: Writing a Maya Plug-in 190

Listing 13-5:Getting a Texture’s Pathname
 MPlug colorPlug = MFnDependencyNode(shaderObj).findPlug("color",
 &status);
 if (status != MS::kFailure)
 {
 MItDependencyGraph dgIt(colorPlug, MFn::kFileTexture,
 MItDependencyGraph::kUpstream,
 MItDependencyGraph::kBreadthFirst,
 MItDependencyGraph::kNodeLevel, &status);

 if (status != MS::kFailure)
 {
 dgIt.disablePruningOnFilter();

 if (!dgIt.isDone()) // true == no texture
 {
 const char *filePath;
 FSSpec spec;
 OSErr iErr;
 Str255 hfsPath;
 MString textureName;
 char newPath[500];

 MObject textureNode = dgIt.thisNode();
 MPlug filenamePlug =
 MFnDependencyNode(textureNode).findPlug(
 "fileTextureName");

 filenamePlug.getValue(textureName);

 /* GET UNIX PATH */

 filePath = textureName.asChar();
 strcpy (newPath, filePath); // copy to our buffer

 /* CONVERT TO HFS PATH */

 ConvertFileRepresentation(newPath, kCFURLPOSIXPathStyle,
 kCFURLHFSPathStyle);
 c2pstrcpy(hfsPath, newPath);

 /* MAKE IT INTO AN FSSPEC THAT WE CAN USE */

 iErr = FSMakeFSSpec(0,0, hfsPath, &spec);
 if (iErr)
 {
 MGlobal::displayError("Cannot find texture file!”);
 return(-1);
 }

191

 /* GET THE FILE AND DEAL WITH IT */

 GetTextureMap(m, &spec, &matData);

 hasTexture = true;
 }
 }
 }

Once again, we start by looking for an attribute in an object. This time we’re looking for the
“color” attribute in our shader object:

 MPlug colorPlug = MFnDependencyNode(shaderObj).findPlug("color",
 &status);

Then we make another iteration object, this time of type kFileTexture, but we have no
intention of actually iterating through this because the first instance contains the data we’re
looking for. We test the iteration’s isDone() function, and if it returns true then this shader
object doesn’t have any texture map. Otherwise, we know there is a texture to be found. To
get the pathname of the texture map’s source file, we look for yet another attribute:

 MPlug filenamePlug = MFnDependencyNode(textureNode).findPlug(
 "fileTextureName");
 filenamePlug.getValue(textureName);
 filePath = textureName.asChar();

This returns a UNIX file path that is pretty much useless to us, so we call a new function that
uses some Core Foundation calls to convert the UNIX path to a nice HFS path. Then we’re
free to load the texture map, and do whatever we want with it.

 strcpy (newPath, filePath); // copy path into a buffer

 ConvertFileRepresentation(newPath,
 kCFURLPOSIXPathStyle,
 kCFURLHFSPathStyle); // convert UNIX to HFS path
 c2pstrcpy(hfsPath, newPath); // make Pascal string

 FSMakeFSSpec(0,0, hfsPath, &spec); // get FSSpec of texture

The function ConvertFileRepresentation() is the heart of the UNIX to HFS conversion,
and it looks like this:

Chapter 13: Writing a Maya Plug-in 192

Listing 13-6:Converting file paths from one type to another
Boolean ConvertFileRepresentation (char *fileName, short inStyle,
 short outStyle)
{
 CFStringRef rawPath;
 CFURLRef baseURL;
 CFStringRef newURL;
 char newPath[500];

 if (fileName == nil)
 return (false);

 if (inStyle == outStyle)
 return (true);

 rawPath = CFStringCreateWithCString (nil, fileName,
 kCFStringEncodingUTF8);
 if (rawPath == nil)
 return (false);

 baseURL = CFURLCreateWithFileSystemPath (nil, rawPath,
 (CFURLPathStyle)inStyle, false);
 CFRelease (rawPath);
 if (baseURL == nil)
 return (false);

 newURL = CFURLCopyFileSystemPath (baseURL, (CFURLPathStyle)outStyle);
 CFRelease (baseURL);
 if (newURL == nil)
 return (false);

 CFStringGetCString (newURL, newPath, MAXPATHLEN, kCFStringEncodingUTF8);
 CFRelease (newURL);
 strcpy (fileName, newPath);
 return (true);
}

Personally, I like to use Quicktime’s Image Importer features to load these texture maps since
Quicktime supports virtually every file format under the sun. We’ll talk more about import-
ing images with Quicktime in Chapter 17.

In addition to texture maps there are also color parameters associated with a surface shader.
Extracting the transparency and diffuse color information out of a shader object is really easy,
but to do it we first need to know what type of shader it is. Just as there are several types of
materials there are also several types of Surface Shaders. The two types we support in our
plug-in are the Phong shader and the Lambert shader. To find out which type of shader this
is, we call the shader’s apiType() function:

193

 MFn::Type apiType = shaderObj.apiType();

Then we have some code that will extract the transparency and diffuse color information out
of it:

Listing 13-7:Getting color info from a Phong or Lambert Shader
 MColor diffuseColor;
 MColor transColor;

 switch(apiType)
 {
 /************************/
 /* EXTRACT PHONG SHADER */
 /************************/

 case MFn::kPhong:

 // get functions for phong shaders
 MFnPhongShader phong(shaderObj);

 /* GET DIFFUSE COLOR */
 //
 // in Maya, the textures override diffuse
 // color, so assume white, otherwise
 // we’ll end up with black.
 //

 if (!hasTexture)

 {
 diffuseColor = phong.color() * phong.diffuseCoeff();
 diffuseColor.get(tempColor);

 materialColor.r = tempColor[0];
 materialColor.g = tempColor[1];
 materialColor.b = tempColor[2];
 }
 else
 {
 materialColor.r =
 materialColor.g =
 materialColor.b = 1.0f;
 }

 /* GET TRANSPARENCY */

 transColor = phong.transparency();
 materialColor.a = 1.0f - transColor.r;

Chapter 13: Writing a Maya Plug-in 194

 break;

 /**************************/
 /* EXTRACT LAMBERT SHADER */
 /**************************/

 case MFn::kLambert:
 // get functions for phong shaders
 MFnLambertShader lambert(shaderObj);

 /* GET DIFFUSE COLOR */

 if (!hasTexture)
 {
 diffuseColor = lambert.color() *
 lambert.diffuseCoeff();
 diffuseColor.get(tempColor);
 materialColor.r = tempColor[0];
 materialColor.g = tempColor[1];
 materialColor.b = tempColor[2];
 }
 else
 {
 materialColor.r =
 materialColor.g =
 materialColor.b = 1.0f;
 }

 /* GET TRANSPARENCY */

 transColor = lambert.transparency();
 matData.diffuseColor.a = 1.0f - transColor.r;
 break;

 /***************************/
 /* UNSUPPORTED SHADER TYPE */
 /***************************/

 default:
 MGlobal::displayError("unsupported shader type");
 return(-1);
 }

In Maya the diffuse color of a material is ignored if the material has a texture map. OpenGL,
however, does not. OpenGL will apply the diffuse color to the material, essentially filtering
it. For example, if we have a sphere mapped with a baseball texture, but we also have a red
diffuse color, then OpenGL will render the baseball tinted red. In Maya, however, that

195

diffuse color would be ignored, and a regular white baseball would be drawn. Therefore, if
we know that we have a texture map associated with this shader, then we need to set the
diffuse color to white so that it will render the same in OpenGL as it does in Maya. But if
there’s no texture then we can extract the diffuse color from the shader object.

To correctly calculate the material’s color we need to multiply the diffuse color value by the
diffuse coefficient. These are separate values in Maya that affect how an object is displayed.

 diffuseColor = phong.color() * phong.diffuseCoeff();

Figure 13-6: The color and transparency material settings

In Figure 13-6 you can see the material attributes for a shader that has an RGB color value of
(1,0,0), and the slider next to the color indicates the diffuse coefficient. Here it is set all the
way up to 1.0. Below the color setting is the transparency slider. Here it is set to 0.0, so the
material is totally opaque. Note that a transparency value of 0.0 is opaque, and a value of 1.0
is totally transparent. This is the opposite of how alpha values work, so, when we read the
transparency value from the shader, we have to invert it to make it into an alpha value:

 transColor = lambert.transparency();
 matData.diffuseColor.a = 1.0f - transColor.r;

Installing the Maya Plug-In
Unfortunately, the Maya folks goofed with their plug-in architecture. The shared libraries
that Maya loads must have a file extension of “.lib”, but when Xcode builds a shared library it
always attaches the extension “.dylib”. If you install the file bg3dExporter.dylib in your
Maya plug-ins folder, Maya won’t see it. You’ve got to manually rename the file with a
“.lib” extension. Once you’ve done this you should put the plug-in in the
Users/Shared/Alias/maya/plug-ins folder:

Chapter 13: Writing a Maya Plug-in 196

Figure 13-7: This is where the plug-in files go.

Note, however, that this file path changes almost every time that a new version of Maya is
released. This is bound to change for the next version of Maya since Maya is no longer
owned by Alias, hence, the Alias folder in the pathname will likely be renamed.

In addition to the inconvenience of manually renaming the file, you’ve also got to manually
copy the plugin.rsrc file as well. Maya won’t recognize a bundled shared library with .nib
files, so to make life much easier for us it’s best to use old-style .rsrc files for our dialogs.
This .rsrc file also needs to be in the same plug-in’s folder as the shared library itself. This
way we’ll be able to locate it with the following code:

Listing 13-8:Finding our Resource File
 /* FIND THE USERS FOLDER */

 theResult = FindFolder(kOnSystemDisk, kUsersFolderType, false,
 &tmpVRef, &tmpDirID);
 if (theResult != noErr)
 StandardAlert(kAlertStopAlert, "\pCould not find Users folder!",
 NULL, NULL, &alertItemHit);

 /* FIND PATH FROM USERS TO THE RSRC FILE */

 theResult = FSMakeFSSpec(tmpVRef, tmpDirID, "\p:Shared:Alias:maya:plug-
 ins:plugin.rsrc", &gSharedLibSpec);
 if (theResult != noErr)

197

 StandardAlert(kAlertStopAlert, "\pcould not find plugin.rsrc!",
 NULL, NULL, &alertItemHit);

If you’ve correctly renamed the shared library with the .lib extension and you’ve put it into
the correct plug-ins folder along with the .rsrc file then Maya will see the plug-in, but you
still have to tell Maya that you want to load it. Under the Window menu in Maya, select the
“Settings/Preferences…” item and then the “Plug-In Manager…” item. This will bring up the
Plug-in Manager dialog:

Figure 13-8: The Maya Plug-in Manager dialog

Toward the top you’ll see the bg3dExporter.lib plug-in. Be sure to check both the “loaded”
and “auto load” checkboxes. This way, the plug-in will be installed automatically every time
you run Maya. Whenever you want to export models in your scene, just type the command
“bg3d” on Maya’s command line, press Return, and the plug-in will get called.

This pretty much covers all of the information you need to write a Maya file exporter plug-in.
The bg3dExporter.xcode project on the CD is fully functional, and it’s what we’ll be using to
generate the models used by the sample code in the rest of this book. There is a lot of
additional code in the project that deals with exporting the 3D model files in the format we
want, but you may choose to export the data however you deem necessary for your game.
Should you decide to use this tool as-is then you’ll need to know a little about the files it spits
out: the BG3D files which are discussed next.

Chapter 13: Writing a Maya Plug-in 198

The BG3D File Format
Back in the days of OS 9 Apple had their Quickdraw 3D technology. One of the great things
about Quickdraw 3D was that it had a built-in 3D model file format called 3DMF and it had
all the API functions needed to magically read and write these files. But when Quickdraw 3D
bit the dust, so did 3DMF. I used to use the 3DMF files for all of my games back then
including Weekend Warrior, Nanosaur, and Bugdom, so when I switched my game engine
over to OpenGL for Cro-Mag Rally I had to figure out a substitute for 3DMF.

No existing 3D file format did what I needed for my games, so I decided to design my own
file format that all of my games and tools now use. This new 3D file format is called BG3D
(Brian Greenstone 3D), and it is a metafile consisting of tags followed by data. The tags
you’ll find in a BG3D file are as follows:

BG3D_TAGTYPE_GEOMETRY
This indicates that the data to follow is the header for a new geometry object. This header
contains the type of geometry, the number of materials assigned to the texture along with the
texture number. It also has basic geometry information such as the number of points and
triangles in the geometry.

BG3D_TAGTYPE_VERTEXARRAY
This indicates that the data to follow consists of x, y, z vertex coordinates for the current
geometry object.

BG3D_TAGTYPE_NORMALARRAY
This indicates that the data to follow consists of x, y, z vertex normals for the current geome-
try object.

BG3D_TAGTYPE_UVARRAY
This indicates that that data to follow consists of uv vertex texture coordinates for the current
geometry object.

BG3D_TAGTYPE_COLORARRAY
This indicates that the data to follow consists of RGBA vertex color values for the current
geometry object.

BG3D_TAGTYPE_TRIANGLEARRAY
This indicates that the data to follow consists of triangle vertex indices for the current
geometry object.

199

BG3D_TAGTYPE_MATERIALFLAGS
This indicates that the data to follow is a simple 32-bit value that contains information about
the next material we’re going to load.

BG3D_TAGTYPE_MATERIALDIFFUSECOLOR
This indicates that the data to follow is an RGBA color value representing the current
material’s color.

BG3D_TAGTYPE_TEXTUREMAP
This indicates that the data to follow is a header plus texture map data. The header has the
width and height of the texture along with the texture format of the texture. The data after the
header will be of variable length depending on the size of the texture defined in that header.

BG3D_TAGTYPE_GROUPSTART
This indicates that any geometry to follow is part of a group. This is helpful for organizing
multiple pieces of geometry that belong to a single object; like wheels being part of a car
model.

BG3D_TAGTYPE_GROUPEND
This indicates the end of a group.

BG3D_TAGTYPE_ENDFILE
This indicates the end of the BG3D file.

In all of the sample projects to come you’ll see a new source file called BG3D.c. This file
contains all of the code needed to parse one of these BG3D files. Nothing particularly
interesting happens in this code. It just opens the BG3D file and starts reading the tags and
data out of it to build geometry objects in the form of OpenGL Vertex Arrays. You may wish
to change this implementation or design your own file format for your games. In my games,
the BG3D files have a few additional tags for other pieces of data such as bounding boxes
and compressed textures, and that’s the beauty of using a metafile for your model data since
you can encapsulate anything you want in there depending on your needs.

BG3D Linker
In your game you’ll have hundreds of different models, so rather than having hundreds of
individual BG3D files to load, it makes much more sense to group lots of BG3D files into a
single, large BG3D file. That way, different models can share the same textures too. So,
you’ll find another useful tool on the book’s CD called “BG3D Linker”. You can use this
tool to merge multiple BG3D files together using a makefile that looks something like this:

Chapter 13: Writing a Maya Plug-in 200

LINK :Brach:Brachiosaurus.bg3d
LINK :Drums:BoosterDrum.bg3d
LINK :Drums:HardDrum.bg3d
LINK :Drums:Splitter.bg3d

%::Level1Models.bg3d

end

The BG3D Linker tool will scan this makefile for all of the LINK keywords, and merge each
of the referenced .bg3d files into the output file indicated by a % sign. So, in the above
example four different .bg3d files will be merged into a single BG3D file named
Level1Models.bg3d. If different models share the same texture map, BG3D Linker removes
the duplicates so that the final file is small and efficient.

When you run BG3D Linker, select Execute Makefile from the File menu, and then select
your makefile. As the makefile gets processed you’ll see the output in the Console window:

Figure 13-9: Console output from BG3D Linker

At this point you’re probably asking yourself “isn’t this going to fuse all of my geometry
together into a massive blob of triangles and vertices?” No, because the BG3D file format
has Groups, so this tool puts each separate model into its own group so that when we read this
BG3D file back into our game we can separate each model out. Every 3D game I’ve ever
written for the Mac has used one version or another of this linker utility. I like to have one

201

large .bg3d file for each level’s unique models, and then I also have a global.bg3d file that
contains models that are used throughout the game.

Loading and Using BG3D Files
The sample project “BG3D.xcode” contains a new source file named BG3D.c that has all of
the code needed to load and extract data from a .bg3d model file. The project has another
new source file called “MetaObjects.c”, and this file has all of the code needed to manage our
3D model objects. If you’re familiar with Apple’s old Quickdraw 3D API then this will seem
very familiar because I based my object system on the one used in Quickdraw 3D. The basic
idea here is that there are “objects” that contain data. The data may be a matrix, geometry
data, or even groups. This sample project has a very simplified version of the object man-
agement system that I use in my games.

In the BG3D.xcode project there are two .bg3d model files that it loads in: Dinosaurs.bg3d
and Eggs.bg3d. The Dinosaurs.bg3d file contains two different dinosaur models, and the
Eggs.bg3d file contains three different egg models. When you run the project, you’ll see
several objects spinning on the screen:

Figure 13-10: Three models spinning

First, the code loads the .bg3d files like this:

 ImportBG3D("\pDinosaurs.bg3d", MODEL_GROUP_DINOSAURS);
 ImportBG3D("\pEggs.bg3d", MODEL_GROUP_EGGS);

Chapter 13: Writing a Maya Plug-in 202

The ImportBG3D() function in bg3d.c will parse the input .bg3d file and process all of the
tags to build a database of textures and meshes. All of the vertex and triangle information for
each mesh is stored into a contiguous block of memory so that when we’re done we can mark
that block of memory for use by Vertex Array Range as discussed in Chapter 6.

To create a “meta-object” representing one of the models that we want to draw, we follow
these steps: First, we create a Group Object to contain all of our object’s info:

 baseGroupObj = MO_CreateNewObjectOfType(MO_TYPE_GROUP, 0, nil);

After that, we want to create a transformation Matrix Object, and then put it in our Group:

 matrixObj = MO_CreateNewObjectOfType(MO_TYPE_MATRIX, 0, &matrix);
 MO_AppendToGroup(baseGroupObj, matrixObj);

When the .bg3d file was read in, all of the materials and meshes were stored into meta-
objects, and we kept references to them in gBG3DGroupList[], so to add one of those models
to our Group Object we simply call MO_AppendToGroup() again, and pass in a reference to
the model we want:

 MO_AppendToGroup(baseGroupObj, gBG3DGroupList[bg3dGroup][bg3dModel]);

To draw any object, all we have to do is pass it to MO_DrawObject(). Our code will parse the
meta-data, and process the matrix and mesh that it finds in there.

 MO_DrawObject(gRaptorObject);

The details of what all this code is doing really are not important since you’ll probably want
to write your own object handling functions, but for the sake of getting something on the
screen I wanted to give you this brief explanation of how I like to do things in my games.
The code in BG3D.c and MetaObjects.c is pretty straightforward and well commented, so
you should be able to read through it and figure out how everything works if you’re inter-
ested.

203

Chapter 14: Stereo 3D

In the mid-1990’s the big buzzword was “Virtual Reality”, remember that? You could go to
your local mall and pay $5 to put on a 20 pound headset to watch some ultra-low-rez things
flying around a room for a few minutes, or, pay $20 for a 15 minute ride in a flight simulator
on hydraulics. If you really had nothing better to do with your money, you could shell out a
few hundred bucks on a VR headset and then pray that you could find a game that would run
on it. For better or for worse, VR finally died a painful death as most of these Virtual Reality
companies bit the dust. The fact is that 3D processing horsepower was nowhere near where it
needed to be to drive stereo 3D in those days. The technology at the time could barely render
a single frame of a scene at a decent speed, let along render two frames – one for each eye.

Types of Stereo Glasses
But now, a decade later, we have the horsepower, and maybe even a little to spare, so doing
stereo 3D games is now a realistic possibility (let’s just hope the term “Virtual Reality” stays
dead, though). With the Mac and OpenGL there are two different ways that we can support
stereo 3D: with anaglyph glasses and with shutter glasses.

Anaglyph Glasses
These are the old fashioned red-blue glasses from the sci-fi B-movies of the 1950’s. There
have been some advances in this field since 1950, and we now like to use red-cyan glasses
instead of red-blue. Even though there’s quite a bit of color distortion with these glasses,
your eyes do adjust to some degree, and they’re a very economical way to do stereo rendering
on a home computer. The old red-blue type are still commonly found, so be sure that you are
using red-cyan’s since the red-blue type will not work well for what we’re going to do.

Figure 14-1: Red-Cyan Anaglyph Glasses

Chapter 14: Stereo 3D 204

Shutter Glasses
These were popular in the heyday of Virtual Reality, and can still be found today. They’re
basically a lightweight headset that has two LCD shutter panels; one over each eye. They
flicker rapidly in synchronization with the monitor to reveal the left and right views. Unfor-
tunately, these only work on CRT displays with high refresh rates, and since most computer
users are switching to LCD flat-panel displays there isn’t much use for these now. That being
said, the effect is pretty awesome since there’s no color distortion like you get with anaglyph
glasses, and Apple has put some special support into OpenGL for such hardware.

Figure 14-2: LCD Shutter Glasses

Stereo Camera Calculations
Before doing anything else we need to get a grasp of the concept behind stereo rendering.
The basic idea is that we render the scene twice each frame: once for the left eye, and once
for the right eye. However, doing this “correctly” is more complicated than people usually
think. Everyone’s first instinct is to mimic reality by having two cameras that are separated
by a small distance, and have them look at a focal point. This is often called the “toe-in’
method, and is shown in Figure 14-3:

205

L R
Figure 14-3: Two cameras looking at focal point

Even thought the toe-in method mimics reality (since that’s what our eyes actually do in the
real world), this method has serious problems in the realm of projected 3D math. The
problem is evident by looking at the projection planes in the figure above. Notice that they’re
not parallel, but instead they form an X. This is bad because it will result in vertical parallax
distortions in the rendered image. For example, suppose that there is a sphere on the left side
of the scene as shown in Figure 14-4:

L R
Figure 14-4: The sphere is closer to the right eye’s projection plane than the left eye’s

Chapter 14: Stereo 3D 206

The sphere is closer to the right eye’s projection plane than the left eye’s projection plane, so,
when the scene is rendered, the objects will be drawn at slightly different sizes. The scaling
effect gets worse toward the edges of the screen. The rendered scene will look something like
this:

Figure 14-5: The spheres suffer vertical parallax and don’t line up well

If you were to view this scene with stereo glasses you would see a 3D effect, but it would be
difficult on the eyes, especially near the edges of the screen. What we want to see are two
spheres which have no parallax scaling, just horizontal shifting like this:

Figure 14-6: The kind of stereo projection we want to achieve

In order to achieve this we need to modify the view frustums like so:

207

L R
Figure 14-7: Modified view frustums to achieve a flat projection plane

As funky as those skewed view frustums look, they actually will yield excellent results!
Scenes drawn like this will have very “pain-free” stereo images that look great. This is no
longer a true perspective camera, so we cannot use gluPerspective() to easily set up the
camera’s projection matrix. We’ve now got to do some calculations to manually set our
camera’s frustum, so instead of this…

 gluPerspective (CAMERA_FOV, // fov
 aspect, // aspect
 CAMERA_HITHER, // hither
 CAMERA_YON); // yon

… we need to do this:

Listing 14-1:Calculating a Projection Matrix for Stereo Cameras
static void CalcStereoCameraFrustum(Boolean isLeftCamera)
{
 float left, right, a, b;
 float fov;

 /* DO FORMULA CALCULATIONS */

 fov = CAMERA_FOV / 180.0f * M_PI; // convert FOV to radians

 aspect = (float)gGameWindowWidth/(float)gGameWindowHeight;

 a = CAMERA_HITHER * tan(fov * .5f);

Chapter 14: Stereo 3D 208

 b = CAMERA_HITHER / STEREO_FOCAL_LENGTH;

 if (isLeftCamera) // left camera
 {
 left = - aspect * a + (STEREO_CAMERA_SEPARATION * .5f) * b;
 right = aspect * a + (STEREO_CAMERA_SEPARATION * .5f) * b;
 }
 else // right camera
 {
 left = - aspect * a - (STEREO_CAMERA_SEPARATION * .5f) * b;
 right = aspect * a - (STEREO_CAMERA_SEPARATION * .5f) * b;
 }

 /* SET THE PROJECTION MATRIX FRUSTUM */

 glFrustum(left, right, -a, a, CAMERA_HITHER, CAMERA_YON);
}

There are a few new parameters introduced in this function:

STEREO_FOCAL_LENGTH
This value determines the distance from the camera where objects appear to intersect our
display. Anything closer than this will appear to be popping out of the screen, and anything
farther than this distance will appear to be behind the screen. As cool as it might seem to
have your 3D objects hovering in front of the screen, it’s usually best to have most of your
scene appear behind it. Objects projected in front tend to cause a little more eye strain, and
can cause that “cross-eyed” effect that you’ve probably experienced if you’ve ever been to a
3D movie.

STEREO_CAMERA_SEPARATION
This value determines how far the left and right cameras are separated. The farther apart they
are, the more exaggerated the stereo 3D effect will be, but since separating the cameras
farther and farther is akin to making your head bigger and bigger in the universe, the objects
in the scene will seem to look like toys, and take on a surreal appearance. Moving the
cameras closer together will lessen the stereo effect, but it will also make the objects seem
larger since, in effect, our head is shrinking in the virtual universe.

There’s a general rule in stereo imaging that says that the camera separation should be 1/30th
of the distance to the focal plane. So, if your focal plane is 300 units away then your camera
separation should be about 10 units. This rule is not written in stone by any means, but it is a
good ratio to start with as you tweak things. Personally, I like to exaggerate the stereo 3D
effect in my games, so I tend to use ratios that are more like 1:20 rather than 1:30.

This STEREO_CAMERA_SEPARATION parameter gets used again to calculate the coordinates of
the left and right eye. Remember that we’re going to be drawing each frame twice: once for

209

the left eye and once for the right eye, and when we do this we need to actually offset our
camera for each location:

Listing 14-2:Offsetting the Camera for the Left or Right Eye
static void OffsetStereoCameraCoord(Boolean isLeftCamera)
{
 OGLVector3D aim;
 OGLVector3D xaxis;
 float sep = STEREO_CAMERA_SEPARATION * .5f;

 if (isLeftCamera) // negate separation for left eye
 sep = -sep;

 /* CALC CAMERA'S X-AXIS */

 aim.x = gCamera_LookAt.x - gCamera_Coord.x;
 aim.y = gCamera_LookAt.y - gCamera_Coord.y;
 aim.z = gCamera_LookAt.z - gCamera_Coord.z;
 OGLVector3D_Normalize(&aim, &aim);
 OGLVector3D_Cross(&aim, &gCamera_UpVec, &xaxis);

 /* OFFSET CAMERA COORD */

 gStereoCamera_Coord.x = gCamera_Coord.x + (xaxis.x * sep);
 gStereoCamera_Coord.y = gCamera_Coord.y + (xaxis.y * sep);
 gStereoCamera_Coord.z = gCamera_Coord.z + (xaxis.z * sep);

 /* OFFSET CAMERA LOOKAT */

 gStereoCamera_LookAt.x = gCamera_LookAt.x + (xaxis.x * sep);
 gStereoCamera_LookAt.y = gCamera_LookAt.y + (xaxis.y * sep);
 gStereoCamera_LookAt.z = gCamera_LookAt.z + (xaxis.z * sep);
}

There’s nothing particularly amazing about this code. We’re simply calculating an x-axis
vector for the camera, and then offsetting the camera along that vector. If it’s the left camera
we’re dealing with then we offset it left, and if it’s the right camera then we offset it to the
right.

Rendering for Anaglyph Glasses
Ok, we’ve covered the basic math behind stereo cameras, so now let’s put it to use. The
sample project ”AnaglyphStereoRendering.xcode” shows how to fully implement support for

Chapter 14: Stereo 3D 210

anaglyph glasses using the code above plus a few more items of interest. The first item of
interest we need to discuss is how to actually generate an image for anaglyph viewing.

Anaglyph glasses have a red filter over the left eye, and a cyan (a mix of blue and green)
filter over the right eye. When we render our scene, we need to draw everything for the left
eye using only the color red, and draw everything for the right eye with only blue and green.
Luckily, this is very easy to do with OpenGL because OpenGL has a simple way to turn on
and off color channels during rendering. The glColorMask() function lets you set the state
of the Red, Green, and Blue channels, so when we go to render the left eye we turn off the
Green and Blue channels, leaving only the Red channel active:

 glColorMask(GL_TRUE, GL_FALSE, GL_FALSE, GL_TRUE);

The cool thing about glColorMask() is that when we render the right eye (which needs only
the Green/Blue channels), OpenGL will not erase the Red channel that’s already in the frame
buffer. This means it is not necessary to draw the left eye into one buffer and the right eye
into another and then composite them manually.

So, our new OGL_DrawScene() function looks like this:

Listing 14-3:Drawing a Scene with a Stereo Camera
void OGL_DrawScene(void)
{

 /* MAKE OUR CONTEXT THE ACTIVE ONE */

 aglSetCurrentContext(gAGLContext);

 OGL_UpdateVertexArrayRange(); // update VAR memory

 /*********************/
 /* CLEAR BACK BUFFER */
 /*********************/

 // make sure clearing Red/Green/Blue channels
 glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);

 // clear back buffer
 glClear(GL_COLOR_BUFFER_BIT);

 /***/
 /* DRAW SCENE IN TWO PASSES (LEFT & RIGHT EYE) */
 /***/

211

 for (gStereoPass = 0; gStereoPass < 2; gStereoPass++)
 {
 glClear(GL_DEPTH_BUFFER_BIT); // clear the z-buffer on each pass!

 /* SET COLOR MASK */

 if (gStereoPass == 0)
 {
 // red-only for left eye
 glColorMask(GL_TRUE, GL_FALSE, GL_FALSE, GL_TRUE);
 }
 else
 {
 // green-blue for right eye
 glColorMask(GL_FALSE, GL_TRUE, GL_TRUE, GL_TRUE);
 }

 /* OFFSET CAMERA FOR LEFT/RIGHT EYE */

 OffsetStereoCameraCoord(gStereoPass == 0);

 /* SET FRUSTUM AND OTHER CAMERA MATRICES */

 SetCameraMatrices();

 /* DRAW SCENE */

 DrawSceneGeometry(); // draw stuff
 }

 /* END RENDER & SWAP THE BUFFER TO MAKE IT VISIBLE */

 aglSwapBuffers(gAGLContext);
}

When we start to draw the frame, we turn on all of the color channels so that when we clear
the back buffer, it’ll clear the whole thing:

 glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
 glClear(GL_COLOR_BUFFER_BIT);

Then we enter a loop to cause the entire scene to be drawn twice, once for each eye. Each
time we draw the scene we need to clear the z-buffer:

 glClear(GL_DEPTH_BUFFER_BIT);

Chapter 14: Stereo 3D 212

Then we set the color mask to either red or cyan depending on which eye we’re rendering for.
On the first pass we do the left eye, so we only turn on the Red channel:

 glColorMask(GL_TRUE, GL_FALSE, GL_FALSE, GL_TRUE);

And then for the second pass we do the right eye, so we draw only into the Green and Blue
channels for cyan:

 glColorMask(GL_FALSE, GL_TRUE, GL_TRUE, GL_TRUE);

Next, we move the camera to either the left or right eye position:

 OffsetStereoCameraCoord(gStereoPass == 0);

Then we set the Projection and Model View matrices as needed for either the left or right eye
camera:

 SetCameraMatrices();

With everything set, we draw the scene and do the next pass if needed.

Anaglyph Color Balancing
Everything we’ve covered so far is all that is needed to render a stereo 3D world, but if we
left it at that, our images wouldn’t look too good because there’s one other major issue that
needs to be addressed when dealing with 3D anaglyph images: color balancing. When we
render our scene, we’re filtering the left eye with red, and the right eye with cyan, but what
happens if we’re drawing a red object such as an apple? Well, it’ll look fine in the left eye
since the red filter won’t have much effect on the object, but it’ll appear almost black in the
right eye because the cyan filter will block out all of the red color in the apple. Any rendered
pixel that isn’t a shade of gray is going to suffer from this problem to some degree.

There is also a physiological problem in that the human eye is much more sensitive to green
than any other color, so the image seen through the cyan filter will look much brighter than
the image seen through the red filter. The eye is so sensitive to green that you will often see
“ghosting” in the left eye as some of the green bleeds through the red filter. If you’ve got a
good pair of anaglyph glasses and a good display then your cyan filter should block almost
100% of the red light, but there will always be a small amount of green bleeding through your
red filter. Keeping this to a minimum is important, but to do so requires a darker red filter
thus dimming the brightness even more.

213

When I made the custom anaglyph glasses for Nanosaur 2, I had our manufacturer send me
gel samples for the different shades of red and cyan that they had. I picked red and a cyan
gels that worked best on Apple’s LCD displays, and I’ve been very happy with the results.
Don’t be mistaken. There is a huge difference in the quality of various anaglyph glasses.
I’ve seen some that had so much color bleeding in both eyes that it was impossible to see any
3D images at all. You’ve got to be sure you’ve got glasses with properly tuned filters.

Additionally, the color accuracy of the phosphors on a CRT display is nowhere near as good
as you get with an LCD. LCD colors are fairly pure, meaning that the red channel won’t
have much green or blue in it, but CRT’s tend to emit stray color wavelengths in each color
channel, so the red phosphor may be spewing out a fair amount of green or blue that you
cannot see until you look at it through a cyan filter. Anaglyph images are best viewed on
LCD displays since the color accuracy is so good, but you can use a CRT as long as you are
aware that there will be more ghosting.

So, what does this all mean to us as programmers? Well, it means that we need to color
balance all of the textures in our game so that there are no pixels that are severely red or cyan
shifted like the red apple would be. We also need to reduce any green peaks since our eyes
are too sensitive to that color.

If you do some research on the web, you’ll find all sorts of complex formulas for doing
anaglyph color balancing, and there are even some methods which people have patented.
There is a research paper from the Computer Science Department at North Carolina State
University that goes into more gritty details of anaglyph color balancing algorithms than you
could ever want:

http://research.csc.ncsu.edu/stereographics/ei03.pdf

The fact is, however, that you can get away with some pretty simple code to do basic color
balancing, and how you choose to color balance your textures is very dependent on how
much color distortion you can accept. If you were to do 100% color balancing you’d end up
with a grayscale texture, so you’ve really got to play with your code to get the look that you
want. In Bugdom 2 the texture colors were so saturated that converting the textures to
grayscale usually yielded better results than any attempt at color balancing, but in Nanosaur 2
the colors were less saturated, so, it was much easier to get good color balance without
making everything go gray.

The following function is very similar to what was used in Nanosaur 2. It’s a simple hack,
but it’s effective:

Chapter 14: Stereo 3D 214

Listing 14-4:Doing RGB Color Balancing
#define RED_RATIO_ADJ .6f
#define GREEN_RATIO_ADJ .4f
#define BLUE_RATIO_ADJ .8f

static void ColorBalanceRGBForAnaglyph(u_long *rr, u_long *gg, u_long *bb)
{
 long r,g,b; // 8-bit color component values
 float fr,fg,fb; // float color component values
 float d;
 float lumR, lumGB, ratio;

 /* GET UNBALANCED INPUT RGB VALUES */

 fr = r = *rr; // get both integer and float versions
 fg = g = *gg;
 fb = b = *bb;

 /* CALC LUMINOSITY OF RED AND CYAN EYES */
 //
 // The NTSC luminance calculation is = .299r + .587g + .114b
 //

 lumR = fr * .299f; // red luminosity = r*.299
 lumGB = fg * .587f + fb * .114f; // cyan luminosity = g*.587 + b*.114

 /* BALANCE RED */

 ratio = lumGB / lumR; // calc ratio of cyan to red
 d = fr * ratio * RED_RATIO_ADJ; // d = adjusted red value
 if (d > fr) // only adjust up, not down
 {
 r = d;
 if (r > 0xff) // make sure doesn't overflow 8-bits
 r = 0xff;
 }

 /* BALANCE GREEN */

 ratio = lumR / lumGB; // calc ratio of red to cyan
 d = fg * ratio * GREEN_RATIO_ADJ; // d = adjusted green value
 if (d > fg)
 {
 g = d;
 if (g > 0xff)
 g = 0xff;
 }

215

 /* BALANCE BLUE */

 d = fb * ratio * BLUE_RATIO_ADJ; // d = adjusted blue value
 if (d > fb)
 {
 b = d;
 if (b > 0xff)
 b = 0xff;
 }

 *rr = r; // return the new RGB values
 *gg = g;
 *bb = b;
}

This function takes as input the Red, Green, and Blue component values of a texture’s pixel,
and outputs the color-balanced values. The first thing we do is to calculate the luminosity of
the Red and Cyan channels. The standard formula for calculating luminosity is:

 Luminosity = .299r + .587g + .114b

So, to calculate the luminosity of Red and Cyan:

 lumR = fr * .299f;
 lumGB = fg * .587f + fb * .114f;

These luminosity values indicate how well balanced each eye is. If lumR is greater than
lumGB then we know that this pixel will look brighter in the left eye than the right eye. What
we want to do is to try and balance out the RGB components based on these luminosities, so
we start with Red by calculating the luminosity ratio of Cyan to Red:

 ratio = lumGB / lumR;

We use this ratio to amplify the red component:

 d = fr * ratio * RED_RATIO_ADJ;

The constant RED_RATIO_ADJ is a value that we’ve set based on what looks good in our game.
You’ll want to tweak these values to make things look best for your own game. If the scene
in your game has a lot of greenery like trees and bushes, then you may need to bump the
RED_RADIO_ADJ value up to make the red channel better balanced against all that green.
However, if your scene contains a lot of red lava and fire, then you might need to bump up
the GREEN_RATIO_ADJ value.

Chapter 14: Stereo 3D 216

Since Anaglyph images tend to be dim due to all the filtering, we really want to avoid
lowering a pixel’s brightness, so if your calibrated component value is less than the original
value we don’t do anything. Otherwise, we update it:

 if (d > fr)
 {
 r = d;
 if (r > 0xff)
 r = 0xff;
 }

This is repeated for the Green and Blue channels.

Black & White
In all of my games that support stereo rendering I give the user the option of playing in black
& white mode where all of the grayscale textures are perfectly color balanced. This yields
the sharpest possible images for anaglyphs, but obviously there’s no color, therefore, things
just don’t look quite as interesting. Additionally, the loss of color tends to make the objects
in the scene a bit less distinguishable and darker. Your bright red power-ups no longer stand
out against the green grass.

The function to convert textures to grayscale looks like this:

Listing 14-5:Converting Textures to Grayscale
static void ConvertTextureToGrey(void *imageMemory, short width,
 short height)
{
 long x,y;
 float r,g,b;
 u_long a,lum;
 u_long *pix32 = (u_long *)imageMemory;

 for (y = 0; y < height; y++)
 {
 for (x = 0; x < width; x++)
 {
 /* CALC LUMINANCE OF THE RGB CHANNELS */

 r = (float)((pix32[x] >> 16) & 0xff) / 255.0f * .299f;
 g = (float)((pix32[x] >> 8) & 0xff) / 255.0f * .586f;
 b = (float)(pix32[x] & 0xff) / 255.0f * .114f;
 a = (pix32[x] >> 24) & 0xff;

 /* CALC LUMINANCE OF THIS PIXEL*/

217

 lum = r + g + b; // calc total luminance
 lum *= 255.0; // convert to 8-bit byte
 if (lum > 0xff)
 lum = 0xff;

 /* CONVERT THRU OUR BRIGHTNESS CURVE */

 lum = gAnaglyphGreyTable[lum];

 /* SAVE LUMINOSITY INTO RGB CHANNELS TO MAKE GREY */

 pix32[x] = (a << 24) | (lum << 16) | (lum << 8) | lum;

 }
 pix32 += width;
 }
}

Once again we use the standard NTSC luminance calculation to get the luminosity values of
the RGB components:

 r = (float)((pix32[x] >> 16) & 0xff) / 255.0f * .299f;
 g = (float)((pix32[x] >> 8) & 0xff) / 255.0f * .586f;
 b = (float)(pix32[x] & 0xff) / 255.0f * .114f;

Then we add all of these luminosities together to get the pixel’s full luminosity value:

 lum = r + g + b;

At this point we could simply use this luminosity value as the RGB component values and be
done with it, but a trick that works well to brighten up the scene is to amplify the luminosity
on a curve table. This table works just like a gamma table. It’s 256 entries, one for each
possible value for the RGB components. We use the current luminosity as an index into the
table which gives us the new luminosity:

 lum = gAnaglyphGreyTable[lum];

Listing 14-6:Generating a Grayscale Amplification Curve
static void BuildGreyCurve(void)
{
 short i;
 float f;

Chapter 14: Stereo 3D 218

 f = 0;
 for (i = 0; i < 255; i++)
 {
 gAnaglyphGreyTable[i] = sin(f) * 255.0f;
 f += (M_PI / 2.0) / 255.0f;
 }
}

The curve that gets generated looks like this:

0x00 0xFF

0xFF

Figure 14-8: A simple grayscale amplification curve

As you can see from the curve, all of the values are bumped up in luminosity since the
straight diagonal line represents the non-amplified luminosity values. The only problem with
amplifying the luminosity like this is that it washes out the contrast a little, but it’s the lesser
of two evils.

There are other tweaks you can make to the grayscale code if you like. For example, instead
of making it a true grayscale with equal Red, Green, and Blue values, you might want to
lower the Green values to reduce ghosting and balance the left and right eye luminosities. If
you wanted to totally eliminate the ghosting you could just set the green channel to 0x00 and
then pump up the blue to compensate.

Where to Buy Anaglyph Glasses
When we shipped Nanosaur 2 we decided to include two pairs of red-cyan anaglyph glasses
in each box. The total cost on this was about 60 cents per box which isn’t bad considering
what a good selling point this was. As mentioned earlier, we had the manufacturer send us
gel samples for the different shades of red and cyan filters that they had. Once we found a

219

pair of gels that worked best on an Apple LCD display we had them custom print up several
thousand pairs for us. There are many companies out there who sell anaglyph glasses, but
prices can vary wildly. The company we like to use is Rainbow Symphony:

www.rainbowsymphony.com

Even if you’re only looking for a few pairs to play around with you can get our custom made
glasses from them since they sell the Nanosaur 2 glasses on their site:

www.rainbowsymphony.com/nano3d.html

Figure 14-9: The custom built Nanosaur 2 anaglyph glasses

The best way to test a pair of anaglyph glasses is to do this: Load up Photoshop and draw a
pure green square on the left side of the image, and then draw a pure red square on the other
side. Look through the anaglyph glasses and close your right eye. Observe how much green
is showing through the left filter. It should be only a little – the less the better. Then close
your left eye and see if any red is visible in the right eye. There should be no red visible at all
if your glasses are of good quality.

If you’re on a CRT display you’ll see much more ghosting of both colors in each eye, but on
an Apple LCD display you should see no red at all in the right eye, and only a small amount
of green in the left eye.

Rendering for LCD Shutter Glasses
Supporting LCD Shutter Glasses is not much different than supporting anaglyph glasses. The
big difference is that it’s difficult to find the right type of shutter glasses that are compatible

Chapter 14: Stereo 3D 220

with OpenGL on the Mac. The way that shutter glasses work is that the LCD panel over each
eye will rapidly flicker from clear to opaque allowing the left eye to see the left image for a
fraction of a second, and then the right eye to see the right image. The trick is in synchroniz-
ing the shutter glasses with the display. The method that Apple implemented for OpenGL is
called “Blue-Line Sync”. It’s a pretty crude, yet effective method. A blue line is drawn at
the bottom of the frame buffers for the left and right eyes. A short blue line for the left
buffer, and a long blue line for the right buffer. The Shutter Glasses’ hardware detects these
lines, and uses them as triggers to open and close the LCD panels.

We’re still going to draw each frame twice, once for the left eye and once for the right eye,
but this time we have to draw them into two separate frame buffers. OpenGL will automati-
cally page flip between the two frame buffers, and the shutter glasses will detect the blue-line
sync signal as this happens.

To tell OpenGL that we will be doing stereo 3D with shutter glasses, we modify our Draw
Context attribute list:

GLint attrib32bitStereo[] = {AGL_RGBA, AGL_FULLSCREEN, AGL_STEREO,
 AGL_DOUBLEBUFFER, AGL_DEPTH_SIZE, 32,
 AGL_ALL_RENDERERS, AGL_ACCELERATED,
 AGL_NO_RECOVERY, AGL_NONE};

This looks the same as the attribute list we’ve used in all of the other sample projects except
that one new attribute has been added: AGL_STEREO. When OpenGL sees this attribute it will
know to create two frame buffers, one for the left eye and one for the right eye. It should also
be noted that you must play full-screen to use AGL_STEREO. You cannot play in a window, so
the sample project “Shutter Glasses.xcode” doesn’t have a windowed option.

The extra frame buffer needed for AGL_STEREO uses up a significant amount of VRAM, so,
you should be very careful about trying to activate this mode on systems with very little
VRAM. Back in Chapter 4 we learned how to determine how much VRAM was available on
the main display, and this is a good place to use that function. If the amount of VRAM is less
than 16MB then you should probably not allow AGL_STEREO.

Luckily, we don’t need to worry about ghosting or color balancing when using shutter
glasses, so we don’t need to have any crazy texture whacking functions. We leave all of our
textures as they are, and when we render the images we don’t need to mess with any color
channels. The only thing special we have to do is tell OpenGL which buffer we’re drawing
into:

221

 if (gStereoPass == 0)
 glDrawBuffer(GL_BACK_LEFT);
 else
 glDrawBuffer(GL_BACK_RIGHT);

The rest of our OGL_DrawScene() function looks pretty typical:

Listing 14-7:Drawing A Scene for Shutter Glasses
void OGL_DrawScene(void)
{

 /* MAKE OUR CONTEXT THE ACTIVE ONE */

 aglSetCurrentContext(gAGLContext);
 OGL_UpdateVertexArrayRange(); // update VAR memory

 /***/
 /* DRAW SCENE IN TWO PASSES (LEFT & RIGHT EYE) */
 /***/

 for (gStereoPass = 0; gStereoPass < 2; gStereoPass++)
 {
 /* TELL OPENGL WHICH BUFFER WE'RE WORKING WITH */

 if (gStereoPass == 0)
 glDrawBuffer(GL_BACK_LEFT);
 else
 glDrawBuffer(GL_BACK_RIGHT);

 /* CLEAR FRAME & Z BUFFERS */

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 /* OFFSET CAMERA FOR LEFT/RIGHT EYE */

 OffsetStereoCameraCoord(gStereoPass == 0);

 /* SET FRUSTUM AND OTHER CAMERA MATRICES */

 SetCameraMatrices();

 /* DRAW SCENE */

 DrawSceneGeometry(); // draw stuff
 }

Chapter 14: Stereo 3D 222

 /* DRAW THE BLUE LINE */

 DrawBlueLineSync();

 /* END RENDER & SWAP THE BUFFER TO MAKE IT VISIBLE */

 aglSwapBuffers(gAGLContext);
}

You’ll notice that once we’re done drawing our scene we call a new function
DrawBlueLineSync() which takes care of drawing correct blue-line sync signals into each
frame buffer:

Listing 14-8:Drawing the Blue-Line Sync
static void DrawBlueLineSync(void)
{
 short buffer;
 short w = gGamePrefs.screenWidth;
 short h = gGamePrefs.screenHeight;

 /* SET A SAFE STATE FOR DRAWING A BLUE LINE */

 OGL_PushState();
 OGL_DisableTexture2D();
 OGL_DisableBlend();
 OGL_DisableLighting();
 OGL_DisableFog();
 OGL_DisableDepthTest();

 /* DRAW A DIFFERENT BLUE LINE INTO THE LEFT & RIGHT BUFFERS */

 for (buffer = GL_BACK_LEFT; buffer <= GL_BACK_RIGHT; buffer++)
 {
 GLint matrixMode, vp[4];

 /* SET THE BUFFER TO WORK WITH */

 glDrawBuffer(buffer);

 /* SET VIEWPORT & MATRICES */

 glGetIntegerv(GL_VIEWPORT, vp);
 glViewport(0, 0, w, h);

 glGetIntegerv(GL_MATRIX_MODE, &matrixMode);

223

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();

 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 glScalef(2.0f / w, -2.0f / h, 1.0f);
 glTranslatef(-w / 2.0f, -h / 2.0f, 0.0f);

 /* DRAW THE SYNC LINE */

 OGL_SetColor4f(0.0f, 0.0f, 0.0f, 1); // set color to black
 glBegin(GL_LINES); // Erase the line to black
 glVertex3f(0.0f, h - 0.5f, 0.0f);
 glVertex3f(w, h - 0.5f, 0.0f);
 glEnd();

 OGL_SetColor4f(0.0f, 0.0f, 1.0f, 1); // set color to blue
 glBegin(GL_LINES);
 glVertex3f(0.0f, h - 0.5f, 0.0f);
 if(buffer == GL_BACK_LEFT)
 {
 // draw a short blue line for the left buffer
 glVertex3f(w * 0.30f, h - 0.5f, 0.0f);
 }
 else
 {
 // draw a longer blue line for the right buffer
 glVertex3f(w * 0.80f, h - 0.5f, 0.0f);
 }
 glEnd();
 }

 OGL_PopState();
}

One other issue to be aware of is that you should not do gamma fades when in AGL_STEREO
mode. If the gamma is dark, then the blue line will obviously not be very blue, thus, the
shutter glasses won’t have anything to sync from. You’ve got to keep the gamma at full
brightness so that the blue line is always visible to the hardware.

Shutter Glasses Hardware
The effectiveness of the shutter glasses is entirely dependant on the refresh rate of your
monitor. LCD displays are typically only 60hz so they cannot be used with LCD glasses.
The flicker would be unbearable. The minimum refresh rate before you go insane from the
flicker is around 75hz, but realistically you want to be at 100hz to 120hz where the flicker is

Chapter 14: Stereo 3D 224

almost completely undetectable. Since no LCD does this, you’ve got to have a good CRT
display.

There are many brands of shutter glasses out there, and most of them are very inexpensive
(you can get a pair for under $100). However, none of those $100 pairs will work on the Mac
because they do not do blue-line syncing. Some pairs require special drivers and special
coding to trigger the shutters, while others do really lame things like interlacing to sync
everything. The only company that currently manufactures and sells shutter glasses with
controllers that on with blue-line sync is the Stereo Graphics Corporation:

www.stereographics.com

Their Crystal Eyes shutter glasses will cost you well over $1000 for a single pair! Ouch! It’s
unlikely that you’re going to go out and drop that kind of money for a gimmick like stereo 3D
gaming, but that’s the only easy option right now. If you’re a technically inclined individual,
however, there is another option, but it’s ugly. Someone has figured out how to build their
own blue-line sync controller that will work with cheap shutter glasses, and they’ve posted an
article to the web:

http://aberco.free.fr/3d.html

You’ve got to speak French, have a lab and an electrical engineering degree to figure out how
to do this, but if you’re looking for a challenge… there ya go. You can probably build the
whole thing for less than $50, and I’ve been told that it works great with our game, Nanosaur
2, which supports AGL_STEREO.

Fun with Anaglyphs
Ok, to wrap up this chapter I wanted to quickly talk about something that’s a bit off the topic
of video games, but still on the topic of stereo 3D images. If you think that the stereo 3D
effects in OpenGL are cool, there are other stereo things that you can do with your Macintosh
that are even cooler! It’s actually quite easy to make your own stereo 3D photographs using
just a regular digital camera and a freeware utility called “AnaBuilder”. AnaBuilder is a
totally awesome utility that will take left and right digital photos, and merge them together to
build anaglyph images. It can be downloaded here:

http://anabuilder.free.fr/download/MacOsX/

225

Taking Stereo Photos
To use this tool you first have to take some stereo photos with your digital camera. All
you’ve got to do is pick a subject that you want to make 3D, and snap a picture of it. Then
move the camera to the right just a few inches, and snap another picture while being careful
not to change the orientation of the camera. This is a good time to use that 1 to 30 ratio that
we discussed earlier. Only move the camera 1/30th of the distance to the nearest object in
your scene. So, if the closest object you are photographing is, say, a tree that is 30’ away
from you, then move the camera 1’ to the right when taking the second picture. If the subject
is closer like, say, the stapler on your desk which is only 2’ away, then only move the camera
an inch.

Figure 14-10: Left and right photos of a toothbrush

Next, load the two images into Photoshop and shrink them down to a reasonable size like
1024x768. AnaBuilder is a Java application, so it’s a little sluggish. Trying to load a giant 5
mega-pixel image into it is just asking for trouble. After you’ve done this, launch AnaBuilder
and load the left and right images from AnaBuilder’s File menu. Note that all of this utility’s
menus are in the AnaBuilder window, not in the usual menu bar.

Aligning the Photos in AnaBuilder
There are countless options in AnaBuilder for aligning the images, applying filters, altering
the gamma, etc, but the two most important things are the alignment controls and the color
balancing window. First, we need to align the two images to form an anaglyph, and the best
way to do it is with the slider controls. Below the Reset button in the AnaBuilder window
you’ll see a button with an icon representing slider controls on it. Click it to bring up the

Chapter 14: Stereo 3D 226

slider controls, and then start moving things around to get the two images lined up how you
want:

Figure 14-11: Drag the alignment sliders to get the left & right images lined up

You’ll need to be wearing your red-cyan anaglyph glasses as you do this in order to see how
things are looking.

When you moved the camera from left to right to take these two pictures, odds are that you
wobbled a little and that the pictures are slightly out of rotation. There are slider bar controls
to adjust the rotation, but one of the nicest features of AnaBuilder is the AutoFit feature.
Once you’ve got the images roughly lined up, you can select AutoFit from the Actions menu.
It may take a little while (15 to 30 seconds) to perform its calculations, but this feature will
usually do a very good job of making the two images line up nicely. Once it’s done perform-
ing the AutoFit, you can tweak the X slider to change the depth of the stereo image.

Color Balancing in AnaBuilder
The next step is to tweak the color balancing. I’ve found that the default color filter settings
on AnaBuilder are way too heavily shifted toward red. The red eye is always way too bright
compared with the cyan eye, but you can tweak this in the Red/Cyan Desaturation Filter
which is found in the Filters menu:

227

Figure 14-12: The AnaBuilder Red/Cyan Desaturation Filter

There’s no real rhyme or reason to how you should tweak these values. Just start playing
with them until the left and right eyes seem well balanced, and the 3D image is clear. I
usually lower the “Red weight” value, and raise the “-Red” value to equalize things a bit, but
varies for each image I’m working with. For example, if your scene has a lot of green trees in
it, then you may need to boost the red instead of decreasing it since the scene may be too
saturated with green. You can spend 20 minutes playing with these filter values before
you’re 100% satisfied with the results.

Slide Bar Attachments for Your Tripod
If you really get into the art of making anaglyphs you will probably want to invest in a Slide
Bar. A slide bar is an attachment for a tripod which lets you easily slide a camera from side
to side. This makes life a lot easier since the camera stays perfectly oriented as you take your
pictures. I’ve got a small 8” slide bar that cost me about $30 and it works for just about
everything except for large panoramic shots which need more separation than 8”. Slide bars

Chapter 14: Stereo 3D 228

are very easy to find on the web, and they come in all sizes. Just do a search for “anaglyph
slide bar” and you’ll get lots of results.

You can also just do a search on the web for “anaglyph pictures,” and you’ll be amazed at
what comes up. There are some truly spectacular homemade anaglyph images out there. I
highly recommend checking them out. Here’s a short list of some worthy sites:

www.marsunearthed.com

www.fotocommunity.de/pc/pc/pcat/41027

www.alpix.com/nice/htmlen/pictstereo.htm

www.geocities.com/Paris/Parc/4239/lesGrands.htm

229

Chapter 15: Networking

I’ve done a few networked games in my career, and after the last one I vowed never to do
another one again. That was back in the days of OS 9 when networking was significantly
more difficult than it is today on OS X since we had Net Sprocket to deal with (not one of my
favorite Sprockets). These days we have two separate technologies that make networking a
much easier task, but the fact remains that networking is a tricky thing, and you should expect
a lot of tech support incidents if your games support it.

The “Networking.xcode” sample project has a simple networking implementation that lets
you either Host a network game, or Join a network game. When the game starts, each player
can move a colored sphere around the screen and it’ll all be networked together. It’s simple,
but it works, and it uses all of the basic OS X networking technologies that I am going to
discuss in this chapter. The two technologies I’m referring to are Rendezvous and BSD
Sockets. Rendezvous is used to allow players to find each other on the network. It’s like
announcing to the world “Hey I’m here! Anyone want to play?” BSD Sockets are what we’ll
use to actually transfer data between players in a network game. Sockets are part of OS X’s
UNIX core, so the function calls are a bit archaic, but there’s a plethora of information that
you can find on the web dealing with it.

Rendezvous
As previously stated, Rendezvous is what we use so that players can locate each other on a
network. It provides an easy way for a Host to advertise a game, and for Clients to locate that
Host. When you start a networked game you need to decide if you’re going to be the Host or
if you want to be a Client. The Host is the player who announces a new game to the world,
and is responsible for managing all of the players. The Client is a player who locates a Host’s
game and joins it. As a general rule, the person with the fastest computer should always be
the Host since most Host implementations require a little extra processing.

Hosting a Game
To advertise a game as a Host we’ll need a new function:

Listing 15-1:Using Rendezvous to Advertise a Game
static void AdvertiseOurGame(void)
{
 CFNetServiceClientContext context = {0, nil, nil, nil, nil };

Chapter 15: Networking 230

 CFStreamError error;
 Boolean registered;

 /* CREATE A NET SERVICE */
 //
 // Pass pass "" as the name so that OS X will use the
 // computer's name, and if there is a name collision
 // it will automatically handle it.
 //

 gMyRVService = CFNetServiceCreate(kCFAllocatorDefault,
 CFSTR(""), // use default domain
 kServiceType, // service type
 CFSTR(""), // use computer's name
 MY_PORT_NUM); // port #

 if (gMyRVService == nil)
 DoFatalAlert("\pCFNetServiceCreate() failed!");

 /* REGISTER/PUBLISH THE SERVICE ASYNCHONOUSLY */

 CFNetServiceSetClient(gMyRVService, AdvertisingCallback, &context);
 CFNetServiceScheduleWithRunLoop(gMyRVService,
 CFRunLoopGetCurrent(),
 kCFRunLoopCommonModes);

 registered = CFNetServiceRegister(gMyRVService, &error);

 /* HANDLE ERRORS */

 if (!registered)
 {
 CFNetServiceUnscheduleFromRunLoop(gMyRVService,
 CFRunLoopGetCurrent(),
 kCFRunLoopCommonModes);
 CFNetServiceSetClient(gMyRVService, nil, nil);
 CFRelease(gMyRVService);

 DoFatalAlert("\pCFNetServiceRegister() failed!");
 }
}

Rendezvous is the trademark name of this so-called “zero-configuration” network technol-
ogy, but the function calls are all CFNetService calls. The first call we make will create a
new network service for us:

 gMyRVService = CFNetServiceCreate(kCFAllocatorDefault,
 CFSTR(""), // use default domain
 kServiceType, // service type
 CFSTR(""), // use computer's name

231

 MY_PORT_NUM); // port #

The parameters we pass to CFNetServiceCreate() describe our game to the network. The
constant kServiceType is a string defined like this:

 #define kServiceType CFSTR("_mygamename._tcp.")

This is the most important parameter because this is the string that other Clients will search
for when looking for games to join. The first part of the string identifies our game, and it
must be preceded with an underscore character as in the example above. The second part of
the string is the connection type - in this case it’s a TCP/IP connection. We could this to a
UDP network connection by putting “_udp.” at the end, but for the examples in this book
we’re going to stick with just TCP/IP connections.

The fourth parameter to CFNetServiceCreate() is the name that we want other players to
see when they join the game. In practice, you would want the user to be able to name their
games, like “Brian’s Battle Arena,” but in our example we pass an empty string. The empty
string tells the OS to assign the computer’s default name to the service. The default name is
whatever you’ve named your computer in the Sharing Preferences pane. If the name you’ve
chosen is already in use, then you’ll get a “name collision error”, but by letting the OS assign
the default computer name you’ll avoid this because the OS detects any name collisions and
appends a number to the end of the name to make it unique. For example, if there are two
computers named “My Computer” that are trying to host a net game, then the second one to
start hosting will automatically be renamed to “My Computer.1”.

The final parameter sent to CFNetServiceCreate() is the port number that we want to use to
play over. This value is completely arbitrary, but to be safe you should use values over
20,000 since the OS reserves many lower port numbers.

After we’ve created this new Network Service object, we need to register it so that it will start
advertising itself:

 CFNetServiceSetClient(gMyRVService, AdvertisingCallback, &context);
 CFNetServiceScheduleWithRunLoop(gMyRVService,
 CFRunLoopGetCurrent(),
 kCFRunLoopCommonModes);

 registered = CFNetServiceRegister(gMyRVService, &error);

The CFNetServiceSetClient() call is used to set a callback function that will handle any
errors that occur. Typically, the only error you’re going to ever get would be a name colli-

Chapter 15: Networking 232

sion error, and those will only occur if you decided not to let the OS set the Service name as
explained above.

Next, we install the Service into our application’s run loop. This way, as we sit in our Host
Game dialog, the OS can be updating this service as it needs. The final call to
CFNetServiceRegister() gets it all going, so now we just sit back and wait for other players
to find us.

Locating Hosts
If we’re looking to join a game as a Client, then we need to set up Rendezvous to locate any
games being advertised on the network. To do this, we create a Network Browser Service
with the following function:

Listing 15-2:Using Rendezvous to Locate Hosts Being Advertised
static void StartBrowsingForHosts(void)
{
 CFNetServiceClientContext clientContext = { 0, nil, nil, nil, nil };
 CFStreamError error;
 Boolean result;
 OSStatus err = noErr;

 gNumHostServices = 0; // clear the list of hosts

 /* CREATE A NETWORK BROWSER OBJECT */

 gServiceBrowserRef = CFNetServiceBrowserCreate(kCFAllocatorDefault,
 HostBrowserCallback,
 &clientContext);
 if (gServiceBrowserRef == nil)
 DoFatalAlert("\pCFNetServiceBrowserCreate() failed!");

 /* INSTALL THE BROWSER */

 CFNetServiceBrowserScheduleWithRunLoop(gServiceBrowserRef,
 CFRunLoopGetCurrent(),
 kCFRunLoopCommonModes);

 /* START SEARCHING THE DOMAIN FOR SERVICES */

 result = CFNetServiceBrowserSearchForServices(
 gServiceBrowserRef,

233

 CFSTR(""), // in default domain
 kServiceType, // look for our service type
 &error);

 /* DID SOMETHING GO WRONG? */

 if (!result)
 {
 CFNetServiceBrowserUnscheduleFromRunLoop(gServiceBrowserRef,
 CFRunLoopGetCurrent(),
 kCFRunLoopCommonModes);
 CFRelease(gServiceBrowserRef);
 gServiceBrowserRef = nil;
 }
}

Once again, we start by creating a Network Service object, but this time we’re creating a
Browser service:

 gServiceBrowserRef = CFNetServiceBrowserCreate(kCFAllocatorDefault,
 HostBrowserCallback,
 &clientContext);

CFNetServiceBrowserCreate() installs a callback function that will be called whenever a
Host is located or if a Host leaves the network. We’ll discuss that callback function in a
moment, but first let’s continue setting up our Browser service:

 result = CFNetServiceBrowserSearchForServices(
 gServiceBrowserRef,
 CFSTR(""), // in default domain
 kServiceType, // look for our service type
 &error);

Here we pass our kServiceType string, which, as you remember, contains the name of the
Service that the Host registered earlier. The Browser object will start searching the network
for Net Services that match that string. When something is found, our callback is called:

Listing 15-3:The Browser Callback
static void HostBrowserCallback(CFNetServiceBrowserRef browser,
 CFOptionFlags flags,
 CFTypeRef domainOrService,
 CFStreamError* error,
 void* info)
{
 if (flags & kCFNetServiceFlagIsDomain)
 return;

Chapter 15: Networking 234

 if (flags & kCFNetServiceFlagRemove)
 LostAHost((CFNetServiceRef)domainOrService);
 else
 FoundAHost((CFNetServiceRef)domainOrService);
}

Here, we determine if the callback occurred because a new network Host was located, or if
one that was already located has gone away. To do this, we simply check the flags variable
and see if kCFNetServiceFlagRemove is set. If not set then we add this Host to our list of
available Hosts, or if it is set then we need to remove that Host from the list.

Here is the FoundAHost() function that will extract the Host’s name and IP address, and then
store it into our list:

Listing 15-4:Extracting Information About a Host Service
static void FoundAHost(CFNetServiceRef service)
{
 Boolean status;

 /* SEE IF WE'VE GOT TOO MANY HOSTS */

 if (gNumHostServices >= MAX_HOSTS_TO_FIND)
 return;

 /* GET THE SERVICE'S NAME */

 CFStringRef name = CFNetServiceGetName(service);

 CFStringGetCString(name,
 gHostList[gNumHostServices].name,
 MAX_NAME_SIZE,
 kCFStringEncodingMacRoman);

 /* GET THE SERVICE'S PORT ID & IP ADDRESS */

 gHostList[gNumHostServices].portNum =
 GetIPAddressOfHost(service, gHostList[gNumHostServices].ipAddress);

 gNumHostServices++;

 /* UPDATE JOIN-GAME DIALOG'S HOST MENU */

 BuildHostListMenu();
}

235

The function CFNetServiceGetName() easily extracts the name string for the Host, but
getting the IP address and port # are a little more complicated, so we need another new
function:

Listing 15-5:Getting the IP Address & Port Number of a Host
int GetIPAddressOfHost(CFNetServiceRef service, char *outString)
{
 int portNum;
 CFArrayRef addrList;
 CFDataRef addrDataRef;
 struct sockaddr *theIPAddr;

 /* RESOLVE THE ADDRESS */

 CFNetServiceResolve(service, nil);

 /* GET THE ADDRESS DATA */
 //
 // This actually returns an array of addresses, but since
 // we know that we're only looking for a single IP address
 // we just check the first array entry.
 //

 addrList = CFNetServiceGetAddressing(service);

 // get data from 1st element in array
 addrDataRef = CFArrayGetValueAtIndex(addrList, 0);

 /* GET A POINTER TO THE IP ADDRESS */
 //
 // The IP address is in the sockaddr structure.
 // The port ID # is in the first two bytes of the sa_data
 // list, and the remaining 4 bytes contain the IP address
 // 2.3.4.5
 //

 // get ptr to the sockaddr data in the CDDataRef object
 theIPAddr = (void *)CFDataGetBytePtr(addrDataRef);

 /* CONVERT THE IP NUMBER TO A C STRING */

 ConvertIPAddressToString(theIPAddr, outString);

 /* CALCULATE THE PORT ID # */

Chapter 15: Networking 236

 portNum = (u_long)(theIPAddr->sa_data[0]) << 8;
 portNum |= (u_long)(theIPAddr->sa_data[1]);

 return(portNum);
}

The first step in getting the IP address from the Host is to resolve the Service’s address:

 CFNetServiceResolve(service, nil);

Next we can get the address data out of it:

 addrList = CFNetServiceGetAddressing(service);

This function actually returns a CFArray, but it’s an array with only one element, so we get
the address like so:

 addrDataRef = CFArrayGetValueAtIndex(addrList, 0);

Different network connection types will return different address formats. We set up our
network as a TCP/IP network by putting “_.tcp.” at the end of our Service Type string. This
means that we know we’re getting an IP address here, and IP addresses are stored in a
sockaddr structure. The CFDataGetBytePtr() function will return a pointer to the sockaddr
value:

 theIPAddr = (void *)CFDataGetBytePtr(addrDataRef);

The sockaddr structure contains an array of bytes where the first two bytes are the socket
number, and the next four bytes are the four values that make up an IP address, such as
168.0.1.4. We’d like to convert those four bytes into an actual IP address string, so we’ve
written yet another function to do this:

Listing 15-6:Converting an IP Address into a String
void ConvertIPAddressToString(struct sockaddr *ipAddr, char *outString)
{
 int j,i;

 j = 0;
 for (i = 2; i <= 5; i++) // the IP addr is in bytes 2,3,4,5
 {
 Str32 s;
 UInt8 num = ipAddr->sa_data[i]; // get this # of the IP address

237

 NumToString(num, s); // convert # to Pascal string
 p2cstrcpy(&outString[j], s); // convert & copy to C string
 j += s[0];
 if (i == 5)
 outString[j] = 0x00; // add 0x00 to end of C string
 else
 outString[j++] = '.'; // insert a "."
 }
}

Even if you only have two computers on your network, it’s possible that the
HostBrowserCallback() will get called multiple times, each time appearing to have found a
new Host. This happens if there are multiple connection pathways on your network, for
example, you might have both a wireless Airport connection and an Ethernet connection. Or,
there may even be a Firewire network connection as well. When you’ve got a setup like this
you may see the same Host multiple times, however, each one is going to have a different IP
address. Most network applications would look for these duplicates and eliminate them,
however, I prefer to show all of them to the user and let him or her choose which connection
to use. The Host pop-up menu in our sample project’s Join Game dialog shows the name of
the Host’s game along with the Host’s IP address:

Figure 15-1: The Host’s IP address is shown in the list

Showing the IP address may assist the player in choosing the fastest network connection type.
If you’ve got a gigabit Ethernet connection and an Airport connection, which would you want
to choose? The trick is that you’ve got to be able to recognize IP addresses. If it starts with
the number “10” then it’s probably an Airport network.

Chapter 15: Networking 238

BSD Sockets
That’s all there is to advertising your game to other players, and having those players locate
you. Now we need to actually set up a connection between the Host and the Clients, and start
sending data between them. All communication is done with Sockets, and a Socket is
basically like a telephone. You’ve got a telephone in your house, and your friend has a
telephone in his house. If your friend knows your telephone number, he can dial you up.
Once you pick up on your end, a connection has been established, and you can start talking.
This is exactly how BSD Sockets work.

Listening for Connections
At the same time that we call AdvertiseOurGame() to announce our game to the network
using Rendezvous, we also need to create a Listener Socket that will listen for incoming calls
from any Clients who’ve seen us and wish to join our game.

Listing 15-7:Creating a Listener Socket
static void CreateHostsListenerSocket(void)
{
 struct sockaddr_in socketAddr;

 /* CREATE SOCKET */

 gHostListenerSocket = socket(AF_INET, SOCK_STREAM, 0);
 if (gHostListenerSocket < 0)
 DoFatalAlert("\psocket() failed!");

 /* SET SOCKET ADDR INFO */

 bzero(&socketAddr, sizeof(socketAddr)); // clear addr

 socketAddr.sin_family = AF_INET; // internet address
 socketAddr.sin_port = htons(MY_PORT_NUM); // arbitrary port ID #

 // allow connection on any type of network:
 // (firewire, ethernet, airport, etc)

 socketAddr.sin_addr.s_addr = htonl(INADDR_ANY);

 /* BIND THE SOCKET */
 //
 // If the port ID is already being used then bind will fail.
 //

239

 if (bind(gHostListenerSocket, (struct sockaddr *)&socketAddr,
 sizeof(socketAddr)) < 0)
 {
 close(gHostListenerSocket);
 DoFatalAlert("\pbind() failed.");
 }

 /* MAKE SOCKET LISTEN-ONLY */

 listen(gHostListenerSocket, MAX_PLAYERS); // max # of queued connects
}

All Sockets are created with a call to socket():

 gHostListenerSocket = socket(AF_INET, SOCK_STREAM, 0);

Here we pass AF_INET which tells the Socket to use Internet addressing, and then
SOCK_STEAM which indicates that it’s a streaming socket.

To assign this Socket to our network port, we first set up some addressing information and
then call bind() to bind the Socket to a port. You may notice that we use some strange
looking functions when we set certain values in the socketAddr structure. The htons() and
htonl() functions are used to make sure the “endian” order of the bytes is correct. Remem-
ber that the Mac uses big-endian ordering for values, yet the PC uses little-endian ordering.
Calling this function ensures that the bytes making up these address values are in the correct
order.

Once the Socket has been bound to the port, we call listen() which will cause the Socket to
start checking for incoming connection requests. This is like plugging in the telephone, and
now you’re waiting for someone to call you. In a little while we’ll discuss how a Client
would “dial up” a Host, but for now let’s just assume that there’s someone out there “dialing”
our IP address, asking for a connection. How do we pick up the phone? In our Host Game
dialog, we continuously call the following function to see if there is anyone calling us:

Listing 15-8:Checking for Connection Requests
int CheckForConnectionRequestFromClient(void)
{
 int connectionSocket;

 /* SEE IF THERE'S A CONNECTION REQUEST WAITING FOR US */

 if (!IsDataWaitingToBeRead(gHostListenerSocket))

Chapter 15: Networking 240

 return(-1);

 /* ACCEPT A CONNECTION (IF ANY) */

 connectionSocket = accept(gHostListenerSocket, nil, nil);

 return(connectionSocket);
}

To accept a connection all we need to do is call accept(), however, this is a “blocking”
function. That means that if we call it, it will just sit there until a connection request is
received. That would be bad. So, before calling accept() we need to determine if there is a
connection request actually waiting for us on the Socket:

Listing 15-9:Determine if a Socket has Data Waiting to be Read
Boolean IsDataWaitingToBeRead(int socket)
{
 struct fd_set connectionSet;
 struct timeval timeout;
 int result;

 /* SET TIMEOUT & SET VALUES */

 timeout.tv_sec = 0;
 timeout.tv_usec = 0; // don't block at all

 FD_ZERO(&connectionSet); // use macro to clear the set
 FD_SET(socket, &connectionSet); // use macro to set socket

 /* CALL SELECT TO SEE IF THERE'S DATA WAITING ON THE SOCKET */

 result = select(socket+1,
 &connectionSet,
 nil,
 nil,
 &timeout); // pass timeout info

 /* CHECK RESULTS */

 if (result < 0)
 return(false);

 if (result > 0) // was there an event on the socket?
 {

241

 // is there data waiting to be read?

 if (FD_ISSET(socket, &connectionSet))
 return(true);
 else
 return(false);
 }

 return(false);
}

This function is a bit cryptic, but what it does is quite simple. We call the select() function
to determine if there is data on a Socket, but it takes a few interesting input parameters. First,
we have to create a “connection set” that contains a list of Sockets that we want to test. In
our case, we only want to test one Socket, so we set up connectionSet like this:

 FD_ZERO(&connectionSet); // use macro to clear the set
 FD_SET(socket, &connectionSet); // use macro to set socket

These are two macros used to first zero out the set, and then to put a value in it. The one
value being set is our socket value.

Note that the first parameter sent to select() is socket + 1. Instead of setting this value to
the number of entries in the connection set, this value is always set to your Socket number
plus one. Strange, I know, but that’s how some genius decided this should work.

The other parameter sent to select() is a timeout value. This indicates how long we want
the select() function to wait for any data to arrive. In our case, we don’t want it to wait at
all, so we set the tv_sec and tv_usec values to 0.

With those parameters set, select() can now check if there’s data waiting for us on our
Socket. If the result returned is negative, then an error occurred. If the result is 0 then no
data is waiting us, but if it’s greater than 0 that’s still no guarantee that there is data. Well,
that’s not totally true. In our case a return value of 1 would probably indicate that there’s
data waiting on the Socket, but to be totally sure, we call another macro to test it:

 if (FD_ISSET(socket, &connectionSet))
 return(true);
 else
 return(false);

If IsDataWaitingToBeRead() returns true then we know there’s a connection request
waiting for us on our Socket, so it’s safe to call accept(). The accept() call returns a new
communication Socket to us, and this is the Socket that we’ll use from now on to send and

Chapter 15: Networking 242

receive data between the Host and the Client. The Listener Socket is no longer needed once
all of the Clients have joined the Host’s game and you’re ready to play. That is, of course,
unless you want to allow new Clients to join the game even while it’s playing. You can close
down any Socket by calling close().

Requesting a Connection
So, we know how to pick up the phone, but how do we place the call? The first step was
locating the Host and extracting its IP address, which is what we did earlier. That was like
looking in the Yellow Pages for a plumber that you like. The IP Address that we got for the
Host was like getting that plumber’s phone number. Now the Client needs to create a Socket,
and issue a connection request to the Host.

Listing 15-10: Sending a Connection Request to the Host
static void SendConnectionRequestToHost(char *ipAddrString)
{
 struct sockaddr_in hostAddr;

 /* CREATE A CONNECTION SOCKET */
 //
 // This creates a TCP/IP streaming socket.
 //

 gConnectionToHost = socket(AF_INET, SOCK_STREAM, nil);

 /* SET ADDRESS INFO OF HOST THAT WE WANT TO CONNECT TO */

 bzero(&hostAddr, sizeof(hostAddr)); // clear address info

 hostAddr.sin_family = AF_INET; // internet
 hostAddr.sin_port = htons(MY_PORT_NUM); // port #

 inet_pton(AF_INET, ipAddrString, // convert IP string to in_addr
 &hostAddr.sin_addr);

 /* ISSUE THE CONNECTION REQUEST */
 //
 // connect() only issues the connect request to the server, but
 // it's up to the host to accept() it.
 //

 if (connect(gConnectionToHost, (struct sockaddr *)&hostAddr,
 sizeof(hostAddr)) < 0)

243

 DoFatalAlert("\pconnect() failed! The host vanished!");

 /* SEND A MESSAGE TO THE HOST TO TELL IT WHAT OUR NAME IS */
 //
 // gMyName is a c-string which we acquired in
 // the Join Game dialog
 //

 if (WriteNetData(gConnectionToHost, gMyName, MAX_NAME_SIZE) <= 0)
 DoFatalAlert("\pWriteNetData() failed!");
}

We create a connection Socket with a call to socket():

 gConnectionToHost = socket(AF_INET, SOCK_STREAM, nil);

Next, we set the address that we want this socket to connect to:

 hostAddr.sin_family = AF_INET; // internet
 hostAddr.sin_port = htons(MY_PORT_NUM); // port #

 inet_pton(AF_INET, ipAddrString, // convert IP string to in_addr
 &hostAddr.sin_addr);

The address’s family is set to AF_INET since it’s an Internet connection that we’re making,
and then we set the port number to MY_PORT_NUM. We could also set the port number to the
value that was returned by GetIPAddressOfHost() earlier, but since we’re hard-coding our
port numbers in our sample project, we might as well just use the constant.

The IP address is set with the cryptic function inet_pton(). This converts the IP address
string into the format that hostAddr needs.

To issue the connection request we simply call connect(). Even though the Host hasn’t had
time to accept() that request yet, we can go ahead and start sending data which will get
queued up on the Host’s end. The first thing that we want to send the Host is our player
name. This is just a C string containing the name that the player wants to be seen as.

Sending Data
To send data from a Client to the Host or from the Host to a Client, we’ll want to call this
new function:

Chapter 15: Networking 244

Listing 15-11: Sending Data
int WriteNetData(int socket, void *buffer, int numBytes)
{
 Ptr bytes = buffer; // Ptr to buffer
 int count, n;

 n = count = 0;

 while (count < numBytes) // loop until we've sent all the bytes
 {
 n = send(socket, bytes, numBytes - count, 0); // write data

 if (n > 0) // we wrote some bytes
 {
 count += n; // inc byte count
 bytes += n; // inc ptr to buffer
 }
 else
 if (n < 0) // error
 return(-1);
 }

 return(count);
}

There are several Socket functions that we can use to send data, but the one we’ve chosen to
use here is send(). There is also a write() function that does the exact same thing as
send() except that it does not have the flags parameter. Use whichever function you prefer,
but be aware that calling send() or write() does not guarantee that all of the bytes you
requested got sent. These functions return a byte count indicating how many bytes were
actually sent, so we sit in a while loop to make sure that everything goes out.

Remember how we needed a function to determine if a Socket had data waiting to be read on
it before we called accept()? Well, the same thing goes for writing data. We need a
function that checks the Socket to let us know if it’s safe to write data to it. This function is
nearly identical to IsDataWaitingToBeRead() since it works the same way:

Listing 15-12: Determining if a Socket is to Send Data
static Boolean IsSocketReadyForWrite(int socket)
{
 struct fd_set connectionSet;
 struct timeval timeout;
 int result;

245

 /* SET TIMEOUT & SET VALUES */

 timeout.tv_sec = 0;
 timeout.tv_usec = 0; // don't block at all

 FD_ZERO(&connectionSet); // use macro to clear the set
 FD_SET(socket, &connectionSet); // use macro to set socket

 /* CALL SELECT TO SEE IF THERE'S DATA WAITING ON THE SOCKET */

 result = select(socket+1,
 nil,
 &connectionSet,
 nil,
 &timeout);

 /* CHECK RESULTS */

 if (result < 0)
 return(false);

 if (result > 0) // was there an event on the socket?
 {
 if (FD_ISSET(socket, &connectionSet)) // is socket ready?
 return(true);
 else
 return(false);
 }

 return(false);
}

The only difference between this function and IsDataWaitingToBeRead() is that the
connectionSet is passed in as the 3rd parameter, not the 2nd parameter. This configures the
call so that we’re checking the Socket’s output queue instead of its input queue. If the output
queue is clear then the result will be 1, so we’re safe to send data over the Socket.

 It is not absolutely necessary that you call IsSocketReadyForWrite() before sending any
data. If you do call send() and the Socket wasn’t ready for it, then send() will just block
until the Socket is ready. So, if we want to prevent our application from stalling it’s a good
idea to check the write status of the Socket before trying to send() data through it. As you’ll
see in the sample project, I only call IsSocketReadyForWrite() when passing game data
during gameplay. I don’t bother with it when I’m sending setup information before the game
starts.

Chapter 15: Networking 246

Unfortunately, when sending data over a TCP/IP connection there is one big problem that
pops up all the time. The data we’re sending between players is generally pretty small, and
the OS doesn’t immediately send network data unless there’s a lot of it. If we try sending say
100 bytes, that 100 bytes goes into an output queue where it sits until one of two things
happen: either more data comes in forcing the queue to flush, or some time has passed
(around 1/5th of a second) in which case the OS goes ahead and sends the data.

One way to get around this problem is to use UDP connections instead of TCP/IP connec-
tions. UDP data is always sent immediately, however, it is not guaranteed to ever get to its
destination. TCP/IP data is guaranteed to get where it’s going. You can fiddle with whatever
connection types you want to try for your game, but if you want to make sure that TCP/IP is
flushing its queue every time you send data then there’s a little trick that you can do: send a
lot of data! In the sample project, you’ll see this call in a few places:

 WriteNetData(gConnectionToHost, &gPadding, PADDING_SIZE);

I call this after I’ve sent the important information that I want the other players to get. What
this does is send a block of 3500 bytes to the Socket, thereby causing the output queue to
flush and send everything immediately. This is a total hack and will cause problems if you’re
on a slow network, but for the purposes of our sample project it actually works quite well.
You just need to remember to read all that garbage padding on the receiving end.

Receiving Data
To receive data from a remote Socket we have a function that should look rather familiar:

Listing 15-13: Reading Data
int ReadNetData(int socket, void *buffer, int numBytes)
{
 Ptr bytes = buffer; // Ptr to buffer
 int count, n;

 n = count = 0;

 while (count < numBytes) // loop until we've got all the bytes
 {
 n = recv(socket, bytes, numBytes - count, 0); // read data

 if (n > 0) // we got some bytes
 {
 count += n; // inc byte count
 bytes += n; // inc ptr to buffer
 }

247

 else
 if (n < 0) // error
 return(-1);
 }

 return(count);
}

The ReadNetData() function looks virtually identical to the WriteNetData() function. The
only difference is that we call recv() instead of send(). We could have also used the
function read() instead of recv() since it’s completely identical minus the flags parameter.
Just like when writing data, reading data is not guaranteed to get all the bytes you requested,
so ReadNetData() sits in a loop until all of the needed data has been received.

Now you know the basics of networking on OS X, but believe me, there is a lot more to
networking if you want there to be. I recommend reading up on BSD Sockets as there are
lots of resources on the Internet dealing with this technology.

249

Chapter 16: Copy Protection

There is one basic rule in sales that says “Thou shall not disgruntle thy customer,” but many
game publishers seem to have forgotten this rule, and they’ve implemented copy protection
schemes that are a nuisance to their paying customers. I’m primarily talking about games
that require you to keep the CD in the drive when playing the game. This form of copy
protection is completely ineffective and totally unacceptable since it’s a major hassle for
legitimate paying customers. So, don’t even think about doing something like that! There are
much more effective ways to reduce piracy that won’t irritate your customers, thus, leaving
them happy and loyal.

Serial Numbers
Using unique serial numbers is the first thing that all of your games should do whether
they’re downloadable or come on a CD. If your games are downloadable and the user buys
the serial numbers on your web site, then you can write an algorithm that embeds their credit
card number into the serial numbers that they purchase. This is highly recommended, and if
you do it you should publicize it. If a person knows that their credit card number is encoded
in their serial number, then they’ll be much less likely to share that serial number with anyone
else.

You’ll need to spend a little bit of time each week on the internet looking for serial numbers
that people have posted to pirate boards and other places. When you find a serial number,
you can add it to your list of known voided serial numbers so that they won’t work anymore.
This technique is becoming very popular in all sorts of applications, not just games. The trick
is in figuring out a good way to void those serial numbers on user’s machines after they’ve
already started using them.

Your game should have an internal copy of this pirate serial number list, and when a user
enters their serial number it should get verified against it. Every time you post an update to
your game it should include an updated list. One trick that I do is to update this list con-
stantly, and re-upload the files, but I keep the game’s version number the same. This totally
confuses pirates. Someone might post a serial number to a pirate board and say that it works
with version 1.0.5, but once I see that and update the list, any more people downloading 1.0.5
will be totally confused why that serial doesn’t seem to work with their copy.

Chapter 16: Copy Protection 250

Phone Home
Not everyone is going to download updates, however, so we need to find another scheme for
dynamically updating the pirate serial numbers list on a user’s computer. This is done by
“phoning home” every few days. In other words, every so often you can have your game
read the current pirate serial number list off of your web site, and then compare the user’s
existing serial number to those in the pirate list. If there is a match, then the user is using a
pirated serial number. This is actually quite easy to implement, and all of the games that
Pangea Software has released since around 1999 do this.

You should never dial out a modem since this would violate the “customer aggravation”
credo, so before trying to read a file off of a web site see if there is currently a live connection
to the Internet.

Listing 16-1:Determining if there is an Internet Connection
Boolean IsInternetAvailable(void)
{
 OSErr iErr;
 InetInterfaceInfo info;

 iErr = OTInetGetInterfaceInfo(&info, kDefaultInetInterface);

 if (iErr)
 return(false);

 return(true);
}

All this function does is make a single call to OTInetGetInterfaceInfo() which returns
true if the Open Transport IP protocol stack is loaded. If there’s no IP stack loaded then
there’s no Internet connection. Downloading a data file is equally as simple:

Listing 16-2:Downloading a File from a URL
OSStatus DownloadURL(const char *urlString, Handle buffer)
{
 OSStatus err;

 /* MAKE SURE THERE’S A BUFFER TO LOAD INTO */

 if (buffer == nil)
 DoFatalAlert("\pDownloadURL: buffer == nil");

 /* DOWNLOAD DATA */

251

 err = URLSimpleDownload(
 urlString, // pass the URL string
 nil, // download to buffer, not FSSpec
 buffer, // handle to buffer
 0, // no flags
 nil, // no callback eventProc
 nil); // no userContex

 return(err);
}

To call DownloadURL() we would first need to allocate a handle to hold the data we’re
reading, and then pass a string containing the full URL of the file we’re looking for. You can
read any data from a web page with this function. For example, here’s how to read the
Pangea Software homepage:

 buffer = AllocHandle(100000);
 DownloadURL(“http://www.pangeasoft.net/index.html”, buffer);

As long as we’re going through all of this trouble to download a data file, why not make it do
more than just obtain a list of known pirated serial numbers? I like to embed all sorts of
useful information in these data files including version information and messages. The
version information can let the user know if there is an update of your game available, and
putting messages in there is a great way to let customers know about new products and things
of that nature. The data files that my games download look something like this:

#$#$
#BVER
2.0.0
#BSER
DJCDIADPOOOT
JDCQWWOBVLKA
ARBIICOSLNCP
*
#NOTE0003
Our new game, Nanosaur 2: Hatchling is now available! Get the free demo at
www.pangeasoft.net/nano2
#TEND

This is a metafile that contains tags identifying different pieces of data:

#$#$
This tag indicates the start of the file. It’s important to look for this because your buffer
might have been filled with a “404 File Not Found” message from the server if the data file

Chapter 16: Copy Protection 252

wasn’t found. DownloadURL() won’t return an error if the server kicks out a message like
that. As far as the Mac is concerned it read valid data, so we’ve got to check that the data is
actually our file by looking for this tag.

#BVER
This is short for “Best Version”, and the data to follow is the version number of the most
recent update to the game. The game compares this version number with its own version
number, and if it’s newer then it will display a message to the user informing them that an
update is available.

#BSER
This is short for “Bad Serials”. The data following this tag is a list of known pirate serial
numbers. The end of the list is indicated by an asterisk.

#NOTE
This tag also has a number after it indicating the Note ID #. We track these ID numbers so
that we know what messages have already been displayed to the user. Obviously, we don’t
want to display the same message every time the user runs the game, so we track which
messages have already been viewed. In the example above, the message is #3 so the follow-
ing text will only be displayed once, but if we later change the message to #4 then whatever
text follows it will be displayed once.

#TEND
This marks “The End” of the data file.

In the sample project “Copy Protection.xcode” you’ll see a new source file called “Inter-
net.c”. This file contains all of the code needed to load this type of metafile from a web site
and then parse the tags. This sample code is fairly stripped down since it doesn’t really do
anything with the serial number data that it extracts out of the metafile. It does notify you
about newer versions, and it will display the embedded message, but all it does with the pirate
serial number list is print it to the Console. Additionally, the embedded message will be
displayed every time you run the sample application because we’re not tracking the Note ID
numbers here.

Hackerproofing
Hackers will do everything in their power to figure out your copy protection schemes and
find ways around them. It is possible, however, to make your game such a pain to hack that
most people won’t bother. That’s what I’ve done with most of my games, and as a result they
are very difficult to pirate on a mass scale.

253

One of the first things that hackers do is try to work around your phone-home code. There is
a free utility that they use called “Little Snitch”. What Little Snitch does is notify the user
whenever an application attempts to access the internet, and then it lets the user choose to let
it happen or to deny it. If the user denies the access, then URLSimpleDownload() will return
an error as though the web site was not found. Unless you take action on this problem,
hackers can quite easily get around your phone-home calls, so what I’ve chosen to do in my
games is to simply not let the game run if Little Snitch is found. In other words, I’ve inten-
tionally made my games incompatible with that utility.

To detect if Little Snitch (or any other process of interest is running), we do this:

Listing 16-3:Check to see if Little Snitch is running
Boolean CheckForLittleSnitch(void)
{
 ProcessSerialNumber psn = {kNoProcess, kNoProcess};
 ProcessInfoRec info;
 short i;
 OSErr iErr;
 Str255 s;
 const char snitch[] = "\pLittleSnitchDaemon";

 /* SET A PROCINFO REC */

 info.processName = s; // process name will go here
 info.processInfoLength = sizeof(ProcessInfoRec);
 info.processAppSpec = nil;

 /* SCAN ALL OF THE PROCESSES RUNNING & LOOK FOR LITTLE SNITCH */

 while(GetNextProcess(&psn) == noErr)
 {
 iErr = GetProcessInformation(&psn, &info); // get process's info
 if (iErr) // if err then no more processes
 break;

 if (s[0] == snitch[0]) // see if name matches
 {
 for (i = 1; i <= s[0]; i++)
 {
 if (s[i] != snitch[i])
 goto next_process;
 }
 }
 else
 goto next_process;

Chapter 16: Copy Protection 254

 /* IF GETS HERE THEN LITTLE SNITCH IS RUNNING */

 return(true);
next_process:;
 }

 return(false);
}

It’s up to you to decide how to handle things if Little Snitch is found, but my advice is to not
bring up a dialog saying “Warning, this game is not compatible with Little Snitch”. Anything
that obvious is only going to tell hackers what to look for when hacking your game. In my
games, I just quietly set a flag, and then I check that flag later when I load a level. If the flag
is set then I just quit the game – no explanation given.

In your games you’ll need to try hard to find ways to make your code hackerproof. Another
tactic that hackers always use is to scan through your application’s binary looking for the
hard-coded list of pirate serial numbers. If they can find the list, then they’ll usually clear it
out to a bunch of 0’s. What I’ve done in my games to avoid this problem is to checksum the
list of serial numbers. Every time the game launches it’ll re-calculate the checksum, and if it
doesn’t match my pre-calculated checksum then I bring up a message saying “This applica-
tion appears to be corrupt”, and then bail. Additionally, never store the raw serial number
data in a list. You should always encode it somehow so that it’s more difficult for hackers to
see. Even just XOR’ing each character with some value like 0xC5 will make it much harder
to find.

Another thing that I’ve learned to do is to rename my anti-piracy functions. That will make it
harder for hackers to locate the functions in question. For example, it would be unwise to
actually leave the CheckForLittleSnitch() function named like that because hackers will
see that, and immediately go to work on it. Instead, rename that function to something totally
misleading like “AudioInitChannels()”.

Even if a hacker does locate some of your critical copy protection functions, it’s still easy to
make their lives difficult. Sometimes hackers will just put a “return” opcode at the front of
your critical functions which will cause them to be skipped. You can get around this by
making sure that flags are set inside each critical function, and then later in the game you
randomly check these flags to see if they were set. If not, then your copy protection code was
never called.

Never just set simple True/False flags either because a good hacker might figure this out.
Always set the flags to some sort of cookie value that will be much more difficult for a
hacker to understand. For example, in your serial number verification function you might

255

have a flag called gSerialWasVerified that gets set to indicate that verification did occur.
Set that flag to some crazy value like 0x1FA394 to indicate a False response, and maybe
0x42EA901 to indicate a True response. Things like that will drive hackers crazy!

One other important thing that I do with my serial number code is to put the functions in a
header file, and make them inline. Then I call the verification functions from several differ-
ent places in my game. This will cause your verification code to be duplicated in many
places, so even if a hacker thinks they’ve worked around your functions they might not
realize that there are actually multiple copies of each function scattered all over the place.

No matter what you do, you’ll never be able to stop 100% of the piracy of your game. That’s
ok because all you need to do is stop the “mass” piracy, and that’s pretty easy to do if you
take the precautions described above. Don’t worry about little Jimmy giving his friend
Stephen a copy of your game – that’s an issue, but at least one of those two people actually
did buy the game. When your game is on a pirate board, however, the gloves come off
because nobody there is paying anything for anything.

257

Chapter 17: Miscellaneous Mac Tidbits

There are a whole bunch of other Mac OS X specific things that every game programmer
should know about, but they don’t really fall under any specific category, so I’m going to
discuss them all here.

Setting the Default Directory
On Mac OS 9 and earlier, the “Default Directory” was always set to the directory of the
application that was running. This made it easy to load data files that resided in the applica-
tion’s folder. For example, in Bugdom, if I wanted to load the file Forest.aiff as shown
here…

Figure 17-1: The directory listing of Bugdom

… I would make a simple call like this:

Chapter 17: Miscellaneous Mac Tidbits 258

 FSMakeFSSpec(0, 0, "\p:Data:Audio:Forest.aiff", &spec);

The volume and directory ID’s are set to 0 to indicate that we’re giving a path from the
default directory, and the default directory back on OS 9 was always the running applica-
tion’s folder. On OS X, however, the default directory is set to garbage when your
application launches. You need to manually set it with this code:

Listing 17-1:Setting the Default Directory
void SetDefaultDirectory(void)
{
 ProcessSerialNumber serial;
 ProcessInfoRec info;
 FSSpec app_spec;
 WDPBRec wpb;

 /* GET OUR PROCESS’S INFO */

 serial.highLongOfPSN = 0;
 serial.lowLongOfPSN = kCurrentProcess;

 info.processInfoLength = sizeof(ProcessInfoRec);
 info.processName = NULL;
 info.processAppSpec = &app_spec;

 GetProcessInformation(&serial, & info);

 /* EXTRACT VOL/DIR INFO */

 wpb.ioVRefNum = app_spec.vRefNum;
 wpb.ioWDDirID = app_spec.parID;
 wpb.ioNamePtr = NULL;

 /* SET DEFAULT DIRECTORY */

 PBHSetVolSync(&wpb);
}

Finding the Preferences Folder
When you save a user’s settings you’ll want to write a file into their Preferences folder. To
do that you’ve got to know the Volume and Directory ID’s of that folder.

259

 iErr = FindFolder(kOnSystemDisk,
 kPreferencesFolderType,
 kDontCreateFolder, // only locate the folder
 &gPrefsFolderVRefNum,
 &gPrefsFolderDirID);

The constant kPreferencesFolderType indicates that we’re looking for the Preferences
folder, but you can use this same call with other constants to locate all sorts of other system
folders. A complete list is found in the CarbonCore framework file named Folders.r, but
some of the more commonly used ones are:

#define kSystemFolderType 'macs'
#define kDesktopFolderType 'desk'
#define kApplicationsFolderType 'apps'
#define kDocumentsFolderType 'docs'
#define kCurrentUserFolderType 'cusr'

Once you’ve located the Preferences folder you’ll usually want to create a folder for all of
your game’s preference files:

 DirCreate(gPrefsFolderVRefNum,gPrefsFolderDirID,
 "\pMyGame",
 &createdDirID);

Language Determination
The “correct” way to handle localization on OS X is to have localized (translated) resources
for each language that you support, and put them into the appropriate folders in the applica-
tion bundle. For example, here’s a directory listing for iTunes showing all of the languages
that it supports:

Chapter 17: Miscellaneous Mac Tidbits 260

Figure 17-2: Resource folders for iTunes

The OS will automatically load the correct resources based on the current language settings
for the computer. This is all fine and dandy except that games often don’t work quite that
way. Sometimes we really need to know what language is set so that we can manually handle
it in our game. To find this out we do this:

Listing 17-2:Determining the Language Settings
long DetermineLanguage(void)
{
 long keyboardScript, languageCode;

 /* FIND OUT WHAT LANGUAGE COMPUTER IS SET TO */

 keyboardScript = GetScriptManagerVariable(smKeyScript);
 languageCode = GetScriptVariable(keyboardScript, smScriptLang);

 /* DO SOMETHING WITH RESULTS */

 switch(languageCode)
 {
 case langFrench:

261

 printf(“We support French!”);
 break;

 case langGerman:
 printf(“We support German!”);
 break;

 case langSpanish:
 printf(“We support Spanish!”);
 break;

 case langItalian:
 printf(“We support Italian!”);
 break;

 case langSwedish:
 printf(“We support Swedish!”);
 break;

 case langDutch:
 printf(“We support Dutch!”);
 break;

 default:
 printf(“Unsupported language, so using English by default”);
 }

 return(languageCode);
}

Determining what language the computer is using is the easy part. Doing the actual localiza-
tion of your game is not. If you’ve got no budget to pay a professional translator to localize
the text in your game then you can always revert to using Sherlock. Sherlock translations
tend to be quite horrible, but I’ve used it on many occasions.

Chapter 17: Miscellaneous Mac Tidbits 262

Figure 17-3: Using Sherlock to do localization

Even though Sherlock translations are bad, you’ll end up getting emails from users who offer
better translations that you can put into the next update. Even when I hire professional
translators to localize my games, there are always some errors, and my customers always
catch them. So, when version 1.0 of a game comes out, the localization is awful, but within a
week or so you’ll have enough free feedback from your international customers that you can
update all the text and release version 1.0.1.

Should you choose to make a concerted effort to do good localization, then you can do a
search on the web for “software localization service” and you’ll have many companies to
choose from. Send your English resources and instruction manual to several companies for a
bid, and then go with the one you like the most. You’d be surprised how different the bids
for this will be. For example, when we bid out Nanosaur 2 we got bids ranging from $1700
to $5000. Obviously, we didn’t go with the $5000 option.

Filenames
The standard file system on OS X is HFS, and HFS is not a case sensitive system. As far as
the OS is concerned, the names “myfile.c” and “MyFile.c” are exactly the same. Because of
this, many game programmers have been lazy about capitalization in their filenames and the
matching strings in the code. In Figure 17-1 you’ll notice that all of the data files for Bug-
dom were capitalized. However, in the code I wasn’t very careful, and would often just use
all lower-case in the filename strings. I’ve probably done this in every game I’ve ever
written, but I’ve really got to stop myself from doing this because it causes problems on OS
X.

263

Some people have formatted their drives with UFS (Unix File System) which actually is case-
sensitive. When they install any of my games on their UFS drives and then try to run them,
they eventually get a File Not Found error. There are other issues with running a true Mac
application on a UFS volume, so it’s not recommended either way, but to avoid problems
with future versions of HFS you should really try to be consistent with your filenames and
name strings in the code.

Loading Images with Quicktime
In Chapter 10 we talked about how Quicktime can be used to play pretty much any kind of
Audio file around. Well, the same goes for image formats. Quicktime can be used to load
anything from JPEG’s, TIFF’s, PICT’s, and even Photoshop files. The following code will
load the image file indicated in the FSSpec into a GWorld:

Listing 17-3:Loading an Image with Quicktime
void DrawPictureIntoGWorld(FSSpec *myFSSpec, GWorldPtr *theGWorld)
{
 OSErr iErr;
 GraphicsImportComponent gi;
 Rect r;
 ComponentResult result;
 PixMapHandle hPixMap;

 /* PREP IMPORTER COMPONENT */

 // load importer for this image file
 result = GetGraphicsImporterForFile(myFSSpec, &gi);
 if (result != noErr)
 {
 DoFatalAlert("\pGetGraphicsImporterForFile failed! One of
 Quicktime's importer components is missing. You should
 reinstall OS X to fix this.");
 }

 /* GET DIMENSIONS OF IMAGE */

 if (GraphicsImportGetBoundsRect(gi, &r) != noErr)
 DoFatalAlert("\pGraphicsImportGetBoundsRect failed!");

 /* MAKE GWORLD */

 iErr = NewGWorld(theGWorld, 32, &r, nil, nil, 0); // try app mem
 if (iErr)

Chapter 17: Miscellaneous Mac Tidbits 264

 DoFatalAlert("\pDrawPictureIntoGWorld: NewGWorld failed");

 hPixMap = GetGWorldPixMap(*theGWorld); // get gworld's pixmap
 (**hPixMap).cmpCount = 4; // we want full 4-component argb
 // (defaults to only rgb)

 /* DRAW INTO THE GWORLD */

 DoLockPixels(*theGWorld);

 // set the gworld to draw image into
 GraphicsImportSetGWorld(gi, *theGWorld, nil);

 // set import quality
 GraphicsImportSetQuality(gi,codecLosslessQuality);

 result = GraphicsImportDraw(gi); // draw into gworld
 CloseComponent(gi); // cleanup
 if (result != noErr)
 DoFatalAlert("\pGraphicsImportDraw failed!");
}

The call to GetGraphicsImporterForFile() tells Quicktime to figure out what kind of
image file this is and to load the appropriate importer for it. If it is a file type that Quicktime
does not understand you’ll get an error.

Next, we determine the size of the image by calling GraphicsImportGetBoundsRect(), and
then we use the returned Rect to allocate a new GWorld. It’s into this GWorld that we’ll draw
the image, and there is a very important hack that we do here:

 (**hPixMap).cmpCount = 4;

When you allocate a 32-bit GWorld the component count (cmpCount) is actually set to 3. This
would tell Quicktime to only recognize the image’s RGB channels, but not the alpha channel.
We want to preserve any alpha channel information in the image, so we’ve got to manually
set the cmpCount to 4.

Before drawing the image into the GWorld, it is a good idea to call
GraphicsImportSetQuality() to make sure we get the best image we can. For most
standard image formats there is no difference in import quality, but to be safe we’ll always set
this to codecLosslessQuality.

To draw the image, we simply call GraphicsImportDraw(), and Quicktime takes care of
everything.

265

Chapter 18: Marketing & Selling

Once you’ve made a game for the Mac, it sure would be nice to make some money off of it,
wouldn’t it? My motto is “You’ve got to spend money to make money”, so if you want your
game to be a commercial success you’ve got to spend the time and money on marketing and
sales. You could take the easy way out and try to get one of the existing Mac game publish-
ers to publish your game for you, but I recommend against that in most cases. You should
consider finding a publisher if you just don’t have the resources to publish it yourself, but if
you think you’ve got a hit game then you really don’t want to dilute its value by putting a
publisher in the mix. Besides, you should always try to develop your company’s brand name
so that you’ll get more and more successful in the future.

When I tell people that I make games for the Mac, I usually get a funny look, but the fact is
that the Mac is an excellent platform for developing games. While we may only have 5% of
the worldwide computer market, it’s better to be a big fish in a small pond than a small fish in
a big pond, and it doesn’t take much effort to become a big fish in Apple’s tiny pond. The
PC game market is so overcrowded that you’d have a better chance of making ice cream in
Hell than starting a successful game company on that platform. The Mac, however, is an
easy market to break into and get attention. As long as you’ve got a good game, you can
make good money.

Marketing Your Game
The great thing about developing for the Mac is that marketing to Mac users is much easier
than it is for any other gaming platform. Advertisements in Mac magazines and on Mac web
sites cost a fraction of what it would be for the same thing in other magazines, say for PC,
Playstation, etc. Unlike the PC market which is totally flooded with games, the Mac market
has plenty of room in it; so, smaller games can still get a lot of good publicity.

Here is a list of the best Mac Marketing Resources you should pursue:

Inside Mac Games
www.insidemacgames.com

This is the premier web site for gaming on the Mac, and it has been around since 1993. You
should always send any press releases to IMG since they are always happy to announce new
game information. If they like you enough they’ll usually do previews and reviews of your
games.

Chapter 18: Marketing & Selling 266

You can also take out banner ads for a very reasonable price, and they’ll be seen by your core
gaming audience, so it’s well worth it. To get information about current advertising rates
contact tuncer@insidemacgames.com

Mac Game Files
www.macgamefiles.com

This site is actually run by Inside Mac Games, so there is some cross-linking between the two
sites. This is the main repository for Mac game downloads. Just about every demo, update,
and downloadable game can be found here along with user reviews and comments. To
submit your game to MGF click on the “submit a file” link at the top of the homepage.

While MGF is a good place to host your files, it should not be your only host. The file
transfer speeds on MGF are generally quite slow. I usually get between 2k/sec and 12k/sec.
Not exactly high-speed bandwidth, but it’s free so don’t complain.

Mac Gamer
www.macgamer.com

This is another one of the big Mac gaming web sites. Always send your Press Releases to
these guys as well.

MacCentral
www.maccentral.com

This is not a game-specific web site, but it is the premier Mac news site and one of their
primary writers, Peter Cohen, is a big fan of games, so be sure to keep these guys in the loop
as your game nears release. MacCentral is actually operated by Macworld Magazine, so you
can get cross-promotional advertising rates. Ads here are a bit pricey for a small game
publisher, but they will reach a wide audience so if you can work out a good deal then go for
it.

VersionTracker
www.versiontracker.com

267

This is a hugely popular site that lists software updates and new releases every day. It’s a
good marketing resource because just by having your game listed in their daily updates you’ll
get a ton of traffic to your site. Be sure to always let them know when you’ve released an
update to your game since that’s just more free publicity.

Macworld Magazine
www.macworld.com

Macworld is the oldest major Mac magazine still around, and they have a very large reader-
ship base. Advertising in this magazine is very expensive, and you usually have to commit to
a series of ads, but I’ve always found this to be an effective way to get the word out.

MacAddict Magazine
www.macaddict.com

This magazine has really increased in popularity over the last few years, and it probably
caters more to the gamer crowd than Macworld magazine does. The other nice thing about
MacAddict is that they ship a CD with every issue, and if you’re lucky, they’ll ask you if they
can put your game demo on there. This is a very huge deal! Whenever MacAddict has put
one of our games on their CD, our sales of that game will typically triple during that month!
You can also pay to have your game put on their CD.

Apple’s Game Site
www.apple.com/games

Apple claims to get a massive number of hits on their games page every month, but honestly,
I’ve never found any marketing here to make much difference in sales. They’ll often do
articles about new games, and they’ll host movie trailers, but advertising here doesn’t seem to
pay off – at least it didn’t for us when we tried it. You might have better luck.

Game Demos
The single most important thing you can do to market your game is to release a demo. People
don’t like to shell out hard earned money for something they’ve never seen, so a free demo is
the best selling gimmick you can do, and they’re easy to make. It usually only takes me
about 2 hours to build demo versions of any of my games. If you’re just porting a PC game

Chapter 18: Marketing & Selling 268

that’s already well known, then a demo probably isn’t too important, but if you’re developing
an original title then it is critical.

In the old days of video games (and by old I mean like 1986) most game demos would expire
after a certain amount of use. For some reason, people stopped doing this, but I highly
recommend that all game demos have an expiration time bomb in them. While it’s true that
an expiring demo will annoy some people, the fact is that for every one person that gets angry
with you for doing that, there will be ten other people buying the game who might not have
done so otherwise. Besides, if someone doesn’t know if they want to buy your game after
playing it for an hour then it’s unlikely they will ever buy it.

You would not believe how many times I’ve picked up the phone and heard a woman telling
me that she needed to order a game right away, and needed it shipped Next Day because her
son was having a tantrum since he couldn’t play the demo anymore. I could always hear a
crying kid in the background. I’m not making this up! This happens all the time, so trust me,
expiring demos are a great motivation to get people to buy your game. Small children,
especially, will just play a demo forever since they don’t know better, but if that demo
expires you bet you’ll be hearing from the parents with a credit card number in hand.

The other important thing about game demos is that you should never give too much away.
You’ll always be tempted to show the player all the cool stuff in your game, but resist! You
need to keep the demo downloads small, and you should always leave the customer wanting
more. Smaller demos are faster to download, thus, more people will try it out. On a similar
note, never ever release a game demo before a game has shipped! You need to get every
impulse buy that you can, and if the game isn’t available when the user tries out your demo,
they’re going to blow it off, and you’ve just lost a sale.

My favorite example of a demo gone wrong is the one for the old EA game called “Future-
Cop.” This was a really cool game, but they released the demo about 2 months before the
game actually shipped, and the demo had way too much stuff in it. When I played the demo I
really wanted to go buy the game, but by the time that FutureCop finally shipped several
months later, I was tired of it. I had played the demo to death, and had no desire for more.

One of the troublesome issues with game demos is getting them hosted for people to down-
load them. Our game demos are usually 20-30 Megs in size, and if you’ve got thousands of
people downloading it every month, the bandwidth gets pretty heavy. As I mentioned above,
you can submit your game files to MacGameFiles.com which is free, but their bandwidth is
very poor, so you need to provide a faster way for people to get the files. You can occasion-
ally find sites that offer unlimited bandwidth for $29.95 month, but those are always garbage.
Your downloads will be even slower than MacGameFiles, and there’s usually fine print that

269

says that “unlimited bandwidth” really means 30gigs per month. Anything over that costs
you $5 per gig or something ridiculous like that.

There is no magic bullet solution to the bandwidth problem, however, there is one service that
I can recommend which has been amazingly reliable:

www.fileburst.com

FileBurst charges about $1.00 per gigabyte of bandwidth, with discounts over 100 gigs. The
download speeds are wicked fast too. I’ve never gotten less than 250k/sec off of their site
even during high traffic time periods. We use FileBurst to host all of our files including
game demos, updates, and full versions.

Statistically speaking, I’ve found that about 1 in 20 people who download a game demo will
end up buying it (5% sell-through rate). If the demo is around 100 Megs (like Billy Frontier
was), then that means it costs about 10 cents in bandwidth per download. If only 1 in 20
people end up buying it then that means you’ve paid about $2.00 in bandwidth fees to make
the sale. You always need to work this into your business plan. I always assume $1.00 to
$2.00 in costs for bandwidth on each sale.

Selling Retail
Many people are going to think I’m crazy when I say this, but here it goes… There’s no
money to be made in retail on the Mac. There I said it. To start with, there are only a few
stores selling Mac software, and only two really big ones with significant sales volume:
CompUSA and the Apple Store. The only way to get into either of these stores is to use one
of the big distributors like Ingram Micro or Navarre. Without going into a long tirade, the
bottom line is that the middle men take so much money from you that there’s no way you can
actually make a decent profit. Getting paid by a distributor is worse than pulling teeth, and
you should consider yourself lucky if you get paid at all. If I were to add up all of the money
owed to us from various distributors who simply stiffed us over the years, it would come
close to $20,000!

You don’t want to mess with the mail order catalogs either. In order to get picked up by a
mail order catalog you have to agree to buy a huge number of expensive ads in their mailers,
and the sales are always very low. For example, we spent about $12,000 on an advertising
campaign for Cro-Mag Rally in one of the big Mac mail order catalogs. Guess how many
copies they sold… just guess… It was around 30. Yes, we spent $12,000 of our marketing
budget to sell 30 copies of a game that had a profit margin of around $10. That was a fair
trade don’t you think?

Chapter 18: Marketing & Selling 270

Now I should point out that it’s not all bad. As long as you deal with the small guys, your life
can be much better. We still do some retail distribution, but now we use a nice little distribu-
tor called Visco Entertainment. These guys are honorable and always pay their bills on time,
so I recommend inquiring with them about distribution:

www.viscoent.com

Selling direct to the smaller retail stores is usually a pleasant experience as well. The small
companies are run by caring human beings who aren’t out to screw you, so you can feel safe
doing business with them.

Selling Online
Online sales are the future of software distribution, and the future is now. About two years
ago Pangea Software switched its business model from retail sales to online sales, and it was
the best business decision I’ve ever made. Our profits skyrocketed since we’d cut out all of
the middlemen. Plus, we got immediate payment from the credit card companies since all of
these sales were direct-to-end-user sales. On a $40 game we would be lucky to have a $10
profit from that when we went through the big distribution channels, because by the time you
deduct the manufacturing and shipping costs, discounts, rebates, returns, and lack of pay-
ments, that was about all that remained. But with direct online sales a $40 game sells for $40
and our only costs are the $1 to $2 in bandwidth fees plus the 3% that the credit card com-
pany takes. The rest is all profit.

While it is true that you’ll sell more units in retail than you can online, the profit margin is so
much higher with online sales that it more than makes up the difference. We make over 3x as
much profit on an online sale as we did with retail sales. So, even if we only sell half as
many copies with online distribution, we’re still making a whole lot more profit. Profit aside,
think about all the stress that you don’t have to deal with when doing online distribution.
You don’t have to worry about when or if you’ll ever get paid, and you don’t have to deal
with buyers or any of those people who are out to squeeze you for every penny.

The Online Store
Around 75% of all of our online sales are for the downloadable versions of our games, with
the other 25% buying the boxed CD versions. During the Christmas buying season it’s an
especially good idea to offer a boxed version of your games since downloads don’t make the
best gifts. To handle all of this we’ve had a custom order page built that handles orders for
both the CD versions of the games and the downloadable versions:

271

Figure 18-1: The Pangea Software store front for downloaded games

Once the user purchases a serial number for a downloaded game they will be emailed the
serial number.

It will cost you a few thousand dollars to get a store like this up and running, but if you
cannot afford that then there is another option open to you. There is a well-known company
named Kagi that, for many years, has offered a shareware payment collection service, and
they too can spit out serial numbers for these kinds of purchases. The two biggest downsides
to using Kagi are that they charge a pretty big fee for each sale (usually around $2.50), and it
takes a while to get paid. If you make a sale on January 1st, you will likely not get paid for
that sale until around February 24th. In contrast, a sale on a custom order page might only
cost you $1.00 in credit card fees, and the money will be deposited into your account the next
business day.

Chapter 18: Marketing & Selling 272

Figure 18-2: The Kagi storefront

Even though we have our own custom store to handle all of our orders, I still keep my Kagi
account up and running in case there are malfunctions with my store and I need to point
customers elsewhere. It doesn’t cost anything to have a Kagi account, so it’s good to always
have it as a standby.

We’ve actually used a few different custom store technologies over the years, but by far the
best one is the one that we use today that XACT Commerce built for us:

www.xactcommerce.com

They’ve designed a fantastic order page and processing system, and they are very quick to fix
any problems that come up. If you’re going to sell your games online then I highly recom-
mend contacting these folks to have them build your store for you.

273

Manufacturing & Order Fulfillment
The other part of this equation is manufacturing. You’ll need boxed CD versions of your
games for any retail sales, plus, you need something in a box for people to buy as gifts.
Don’t underestimate the power of Christmas. During a typical Christmas buying season our
sales will be 3-4x higher than normal.

You’ve got a lot of options open to you when it comes to manufacturing, but remember that a
penny saved is a penny earned, so don’t go overkill on the packaging for your game. In the
old days when game boxes were really large, it would cost us about $2.50 per unit. These
days we ship everything in standard DVD style cases, and that has reduced the cost to about
$1.50 per unit. In addition to that, our shipping costs have gone way down because a DVD
case fits quite nicely in a standard UPS letter shipper. The old boxes required larger packing
envelopes, and UPS charged us accordingly.

Remember that this is the Mac we’re talking about, so sales volumes are not going to be in
the hundreds of thousands. If you’re also offering a download version of the game then
assume that most of your sales are going to be from that, not the CD version. What I’m
trying to say is that you don’t want to have 10,000 units of your game manufactured since
you’ll probably never sell all of those. Do small builds of 2,500 units at a time. These
smaller builds will cost a little more per unit, but at least you won’t have excess inventory to
use as firewood for the next eight years.

There are many companies out there who will manufacture your packages for you, but you
want to use a manufacturer who is also an Order Fulfillment company. An Order Fulfillment
company receives the orders from your order page, and processes them in their warehouse.
You don’t have to worry about stuffing games into envelopes and all that mess. They do it
for you… for a fee, of course. The typical fulfillment fee on a package will cost you around
$3.50 – more for international orders.

The company that we have used for the last 5 years is Software Packaging Associates in
Cincinnati, OH.

www.softpack.com

In addition to the fact that we like working with these people, there is one other thing that
makes them a good fulfillment option: location. Ohio is centrally located in the US which
means that Ground shipping to anywhere in the country is only a few days. If you choose a
fulfillment company in California, then any of your customers on the East Coast are going to
have to wait a very long time for their packages to arrive. It is always a good idea to find a
fulfillment company that is geographically central.

Chapter 18: Marketing & Selling 274

The other great thing about Software Packaging Associates is that they’re in DHL’s hub city:
Cincinnati. We do all of our international shipping with DHL because they have the best
international rates, and since we’re shipping from their hub city we’ve managed to get an
incredibly good deal from them. If you were shipping from, say Phoenix, DHL would
charge you more because every package still has to make its way to Cincinnati. So, it’s a
good idea to use a fulfillment company that’s located in a DHL, UPS, or Fed-Ex hub city.

One final note about shipping: make these companies fight for your business. Don’t just call
up UPS and ask for an account. Ask them what kind of discount you can get since you’re
going to “be using UPS a lot to ship a lot of packages.” Tell them you’re also talking to the
other guys, and you want the best deal they can give you. I kid you not when I say that you
can get discounts of 30-50% right off the bat if you try hard enough.

 276

Index

AbsoluteToNanoseconds, 65, 66
AGL, 26-31, 37, 38, 220, 223, 224
aglChoosePixelFormat, 26, 27
AGLContex, 37
aglCreateContext, 26, 28
aglEnable, 27, 29
aglSetCurrentContext, 27-30, 210, 221
aglSetDrawable, 27, 28, 33
aglSetFullScreen, 27, 29, 34
aglSwapBuffers, 29, 30, 211, 222
aglUseFont, 31
AGP, 60
AIFF, 85
alBufferData, 117, 118
alcCreateContext, 114
alcMakeContextCurrent, 114
alcOpenDevice, 114
alDistanceModel, 114
alEnable, 114, 115
alGenBuffers, 117, 118
alGenSources, 120
alListenerfv, 118, 119
alpha, 27, 195, 264
alSetInteger, 114, 115
alSourcef, 120, 121
alSourcefv, 120, 121
alSourcei, 120, 121
alSourcePlay, 120, 122
AltiVec, 49-52
alutInit, 114, 115
alutLoadWAVEFile, 116
alutLoadWAVFile, 115, 117, 118
alutUnloadWAV, 117, 118
AnaBuilder, 224-227
Anaglyph Glasses, 203, 209, 218
AppendMenu, 23
ATI, 37, 56
audio, 85-123
AutoSleepControl, 83
Axis, 141, 154, 157-159, 174

backfaces, 188
bandwidth, 266, 268-270
BG3D, 175, 179, 180, 185, 186, 188, 197-202
bit-depth, 12, 17, 28
black & white mode, 216
BlockMove, 22, 23
blue-line sync, 220-224
Browser, 232, 233
BSD Sockets, 229, 238, 247
Buffers, 113, 116
Bugdom, 2, 140, 198, 213, 257, 262
BuildGreyCurve, 217
BuildResolutionMenu, 18, 22
bump mapping, 9
button names, 167, 168

cache, 38
Cached Mode, 59
CalcDisplayVRAM, 46
CalcFramesPerSecond, 65, 66, 71, 77
calibrate, 158
callback, 75-78, 81, 83, 90, 93, 96, 97, 100,

102, 154, 231, 233, 234, 251
CallMeWhen, 90, 93, 97
capturing, 12
Carbon Events, 75-82, 129, 134
Carmageddon, 67
cartoon shading, 9
CFArrayGetCount, 13, 153
CFArrayGetValueAtIndex, 14, 15, 235, 236
CFBundleCopyResourcesDirectoryURL, 87,

88
CFBundleGetMainBundle, 17, 87
CFDictionaryGetValue, 14-16, 145-150, 153-

158
CFNetServiceBrowserCreate, 232, 233
CFNetServiceBrowserScheduleWithRunLoop,

232

277

CFNetServiceBrowserSearchForServices, 232,
233

CFNetServiceCreate, 230, 231
CFNetServiceRegister, 230, 231, 232
CFNetServiceScheduleWithRunLoop, 230,

231
CFNetServiceSetClient, 230, 231
CFNumberGetValue, 14-16, 46, 145, 146, 149
CFURLGetFSRef, 87, 88
CGDisplayAvailableModes, 13, 15
CGDisplayBestModeForParameters, 11, 12
CGDisplayCapture, 11, 12, 34
CGDisplayIOServicePort, 46
CGDisplayRelease, 33
CGDisplaySwitchToMode, 12, 13
CGGetDisplayTransferByFormula, 70
CGMainDisplayID, 11, 13, 46
CGSetDisplayTransferByFormula, 69, 70, 71,

72, 73
CGSetDisplayTransferByTable, 69, 73
ChangeChannelRate, 109
ChangeChannelVolume, 109
CheckForAltiVec, 49
CheckForConnectionRequestFromClient, 239
CHUD, 6, 8, 9
Classic, 102
Client, 229, 232, 239, 242, 243
CodeWarrior, 3-5, 11, 53
Color Balancing, 212, 214, 226
ColorBalanceRGBForAnaglyph, 214
computer name, 231
copy protection, 1, 249, 252, 254
Core Audio, 98, 115
Core Foundation, 15, 147, 154, 191
Core Graphics, 11, 12, 69
CreateQueueForHIDElements, 170
CreateWindowFromNib, 18, 20
Cro-Mag Rally, 2, 112, 198, 269
CRT, 204, 213, 219, 224
Crystal Eyes, 224

debugging, 11, 30, 62, 73, 174
default directory, 258
Demos, 267
Device, 139, 141, 143, 144, 148-153, 169

DHL, 274
dictionary, 15, 144, 147, 148, 153-156, 158
diffuse coefficient, 195
diffuse color, 192-195
digital camera, 224, 225
distance model, 114
Distributed Builds, 4
distributors, 269
Dolby AAC, 85
Doppler Factor, 122
Doppler shift, 111, 119, 121, 122
Doppler Velocity, 122
DoScreenModeDialog, 18, 20
Double-buffering, 63
DownloadURL, 250-252
D-Pad, 140, 159, 160
draw buffer, 44
draw context, 26-31, 33, 37, 44
DrawBlueLineSync, 222
DrawPictureIntoGWorld, 263
DrawSpriteWithBeginEnd, 45
DrawSpriteWithVertexArray, 45

Element, 141, 152-154, 156-158, 169, 171
endian, 239
EndOfSongCallback, 90, 93, 96, 97
Enigmo, 2, 53, 66, 103
Enter2D, 33-35
event handler, 20, 80, 130, 134, 138
event loop, 21, 75, 76, 78
Event Loop Timers, 75, 76
Exit2D, 33-35
exporter plug-in, 175, 197

Fencing, 62
FileBurst, 269
filter gels, 213
FindHIDDevices, 142, 143
FindSilentChannel, 105, 106
flicker, 28, 204, 220, 223
floating point precision, 67
flushing, 246
font, 31, 32
for Generic Desktop devices, 148
FoundAHost, 234

 278

fragment shader, 9
frame rate, 44, 55, 60, 65-67, 115, 203
frames per second calculation, 67
framework, 108, 259
frsqrte, 52-54
FSGetCatalogInfo, 87, 88
FSMakeFSSpec, 87-91, 116, 117, 190, 191,

196, 258
FSRef, 86-88, 117
FSSpec, 86-91, 103, 116, 117, 190, 191, 251,

258, 263
full-screen, 11, 27-30, 33-35, 78, 134, 220

game demos, 268, 269
Game Sprockets, 11, 139
gamepad, 125, 139-142, 167, 169, 173, 174
gamma fades, 69, 73, 223
GammaFadeInOneFrame, 72, 77
GammaFadeOut, 71, 72
GCC, 4
Gestalt, 49, 50
GetControlByID, 19, 21, 23
GetControlData, 23
GetControlValue, 19, 21
GetEventClass, 130, 132
GetEventKind, 20, 130, 132
GetEventParameter, 20, 81, 131, 132, 135,

136, 137
GetFullPathFromFSSpec, 116, 117
GetIPAddressOfHost, 234, 235, 243
GetKeys, 125, 126, 129, 133
GetMainEventLoop, 76
GetMouse, 133, 134
GetMouseScreenCoord, 133
GetMovieDuration, 89, 92
GetMoviePreferredRate, 89, 92
GetMovieTime, 89, 92
GetMovieTimeBase, 90, 93
GetMyApplicationResourcesFolder, 87
GetTrackMedia, 90, 92
ghosting, 212, 213, 218, 219, 220
glBindTexture, 93
glBindVertexArrayAPPLE, 57, 58, 61
glCallLists, 31, 32
glClear, 29, 30, 210, 211, 221

glColor, 38, 44
glColor4f, 32, 40
glColorMask, 210-212
glDisable, 32, 38, 39, 43
glDisableClientState, 45, 61
glDrawElements, 45, 61
glEnable, 37-39, 43, 44
glEnableClientState, 45, 58, 59, 61
glFinish, 33, 62, 63
glFlush, 33
glFlushVertexArrayRangeAPPLE, 58-60
glGenLists, 31
glGenVertexArraysAPPLE, 56
glGetString, 55
glHint, 43
glListBase, 31, 32
glOrtho, 32
glPopAtrib, 40
glProgramStringARB, 9
glPushAttrib, 40, 41
glRasterPos2i, 31, 32
glTexCoordPointer, 45
gluPerspective, 207
glVertexArrayParameteriAPPLE, 57, 58, 60
glVertexArrayRangeAPPLE, 57, 58, 60
glVertexPointer, 45, 61
GrafPtr, 88, 91, 133

hackers, 253, 254, 255
hat switch, 140
HFS, 190, 191, 262, 263
HID Manager, 125-174
Host, 229, 232-239, 242, 243

InitGammaValues, 70
InitMyCommandEventHandler, 80, 129
InitMyHIDManagerStuff, 142
InitSoundManagerChannels, 98
input devices, 139, 140
Input Sprocket, 139-141, 167, 172
Inside Mac Games, 265, 266
InstallEventLoopTimer, 76, 77
InstallWindowEventHandler, 18, 20
Interface Builder, 5, 6, 21, 78-80
Internet addressing, 239

279

IOCreatePlugInInterfaceForService, 151
IOIteratorNext, 145, 147
IOMasterPort, 142, 143
IORegistryEntryCreateCFProperties, 145, 147
IORegistryEntryCreateCFProperty, 46
IOServiceGetMatchingServices, 143, 144
IOServiceMatching, 143, 144
IP address, 234-237, 239, 242, 243
IsDataWaitingToBeRead, 239-241, 244, 245
IsInternetAvailable, 250
IsSocketReadyForWrite, 244, 245

joystick, 125, 139-142, 150, 157, 158, 171,

174

Kagi, 271, 272
keyboard, 75, 83, 125, 129, 130, 132, 133,

139, 141, 142, 144, 145, 148, 150, 157, 167,
168, 172, 173, 174

keyboard events, 129
key-down, 132
KeyMap, 125, 126, 127, 128, 129, 132
key-up, 132

Lambert shader, 192
Layers, 179, 182-185
Lightwave, 185
Listener, 112, 113, 118, 119, 121, 238, 242
Little Snitch, 253, 254
LoadMediaIntoRam, 90, 92
LoadMovieIntoRam, 90, 92
LoadWAVFiles, 116, 117
localization, 259, 261, 262
loopback points, 112
looping, 85, 93, 96, 97, 100, 105, 112, 120
LoopSoundCallback, 101
luminosity, 69, 214, 215, 217, 218

Mac Game Files, 266
Mac Gamer, 266
MacAddict Magazine, 267
MacCentral, 266
MacGameFiles, 268
Macro Optimizations, 37
Macworld Magazine, 266, 267

mail order catalogs, 269
makefile, 199, 200
manufacturing, 270, 273
marketing, 1, 112, 265, 267, 269
Material, 186
Matrix Multiplication, 51
Maya, 175-197
Menu Bars, 78
meshes, 55, 179, 184-186, 202
modifiers, 125, 169
mouse delta values, 134
MoviesTask, 93-97
MP3, 85
MPDelayUntil, 95
music, 85, 93, 94, 97, 100, 113
MyCFArrayParse, 153
MyEventHandler, 81, 82, 130, 135

Nanosaur 2, 7, 8, 47, 60, 63, 66, 93, 112, 171,

180, 213, 218, 219, 224, 251, 262
Net Sprocket, 229
networking, 229, 247
NewCallBack, 90, 93
NewEventHandlerUPP, 18, 20, 81, 130
NewEventLoopTimerUPP, 76, 77
NewMovieFromFile, 89, 91
Newton-Rhapson refinement, 52, 53
nib, 17, 18, 20, 78, 81, 87, 88, 196
NumToString, 22, 23, 237
Nvidia, 56

OAL_Init, 114
OAL_PlaySound3D, 119
OAL_SetListenerInfo, 118
OGL_AssignVertexArrayRangeMemory, 56,

57, 61
OGL_CreateDrawContext, 26
OGL_DisableLighting, 39, 42, 222
OGL_DrawScene, 29, 77, 83, 210, 221
OGL_DrawString, 31
OGL_EnableLighting, 39, 42
OGL_InitFont, 30
OGL_InitVertexArrayRanges, 55
OGL_PopState, 42, 223
OGL_PushState, 40, 222

 280

OGL_UpdateVertexArrayRanges, 57
OGLMatrix4x4_Multiply, 50
OGLMatrix4x4_Multiply_AltiVec, 51
online sales, 270
OpenAL, 85, 98, 111-123
OpenGL Profiler, 8
OpenMovieFile, 89, 91
optimizations, 37, 46, 49, 55
Order Fulfillment, 273

packaging, 273
ParseAllHIDDevices, 143, 144
Phong shader, 192
phoning home, 250
piracy, 249, 254, 255
PlayEffect, 106, 108
PlaySong, 88, 90
Polling, 169, 171
polygons, 25, 184, 186, 187
port, 46, 89, 91, 134, 140, 142-144, 230, 231,

235, 238, 239, 242, 243
PowerPC, 49, 50, 52, 53, 54
precompiled header, 53
Predictive Compilation, 4
Preferences folder, 258, 259
PrerollMovie, 90, 92
Project Builder, 3
projection matrix, 32, 207
pthread_create, 94

Queuing, 169
Quickdraw 3D, 198, 201
Quicktime, 85-100, 113, 192, 263, 264

Rainbow Symphony, 219
ReadNetData, 246, 247
RecurseDictionaryElement, 150, 153, 156
recv(), 247
rendering, 8, 11, 25, 27-29, 31, 44, 46, 55, 63,

73, 115, 203, 204, 210, 212, 216
Rendezvous, 229-238
ResEdit, 6
resolution, 12, 13, 16, 17, 23, 32, 33, 34, 47
resource, 18, 20, 78, 79, 80, 86, 102, 103, 104,

110, 267

Resource Manager, 104, 110
Resourcerer, 6
Resources Folder, 86, 87
retail, 269
retail stores, 270
reverb, 111
RunApplicationEventLoop, 78, 80
RunAppModalLoopForWindow, 19

sample code, 9
scroll wheel, 134, 135, 137, 138
select(), 241
send(), 244-247
serial numbers, 249-254, 271
SetControlValue, 23
SetGammaFade, 71, 72
SetMenuBarFromNib, 80, 129
SetMoviePlayHints, 89, 92
SetMyMainLoopEventTimer, 76-78
Shader Builder, 9
shared libraries, 195
Shared Mode, 59
shareware, 271
Shark, 6, 7, 8, 49
Sherlock translations, 261, 262
Shutter Glasses, 204, 219, 220, 221, 223
Sleep, 83
slide bar, 227
SndChannelStatus, 105
SndDoImmediate, 100, 101, 106, 107, 109
SndNewChannel, 99, 100, 101
Socket, 238-246
socket(), 239, 243
Software Packaging Associates, 273
Song Volume, 96
Sound Channels, 98
sound interpolation, 92
Sound Manager, 98-123
Sound Resources, 102, 103, 112
SoundEdit 16, 102, 103
Sources, 113, 121, 122
split-screen, 112
StartMovie, 90, 93, 97, 98
stereo 3D, 203, 208, 212, 220, 224
Stereo Graphics Corporation, 224

281

Surface Shaders, 186, 192

TCP/IP, 231, 236, 242, 246
textures, 46, 47, 93, 193, 199, 202, 213, 216,

220
the menu item commands, 80
Threads, 94, 95
thread-safe, 96
Timer events, 75, 80, 82, 95
toe-in, 204, 205
Transform Hint, 43
transparency, 192-195
triangulation, 177

UDP, 231, 246
UNIX, 190, 191, 229
UpdateKeyMap, 126
updates, 5, 169, 249, 250, 267, 269
UpdateSystemActivity, 83
UPS, 273, 274
UpTime, 65, 66, 94, 95
URL, 87, 88, 250, 251
Usage Page, 141, 142, 147, 148, 157, 158
USB, 140, 144, 146, 148, 150, 169

VAR, 55-63, 210, 221
vec_ld, 51

vec_madd, 51
vec_splat, 51
vec_st, 52
vector, 37, 44, 49-52, 118-121, 209
VerifyAndAddHIDElement, 153, 154
VersionTracker, 266
Vertex Array Range, 46, 55, 56, 202
Vertex Arrays, 44-46, 55, 63, 199
vertex colors, 45, 55, 60, 62, 189
vertex normals, 43, 53, 188, 198
vertical parallax, 205, 206
video mode, 12, 17, 34
Virtual Reality, 203, 204
Visco Entertainment, 270
volume, 88-91, 96, 98, 101, 107-114, 120,

121, 258, 263, 269
VRAM, 28, 46, 47, 59, 60, 93, 220

WAV, 85, 112, 116-118, 120
WAV sound file, 116
Weekend Warrior, 2, 198
world-space, 32, 188

XACT Commerce, 272
Xcode, 1, 3-5, 50, 53, 86, 109, 110, 195

z-buffer, 28, 30, 44, 211

